Abstract:The battery-swap station (BSS) has become an important mode to supply electricity to electric vehicles for its rapidity of battery replacement and convenience of battery management. However, since the present prediction methods cannot precisely deal with the large-scale demand of battery-swapping due to the randomness, it is difficult to carry out the charge and discharge schedule. Based on the analysis on the demand forecast and battery number, the models of day-ahead and real-time scheduling for the BSS are set up, and the particle swarm optimization (PSO) is used to perform the simulation in Matlab. The day-ahead scheduling strategy is established on the forecast data of battery replacement demand to optimize the charge-discharge power of each time slot under the premise of meeting the demand. The real-time scheduling strategy of the following time slots is adjusted by dynamic dispatching according to the forecast error. By means of the coordination between two models above, BSS can suppress users’ actual demand fluctuation, while considering user benefits, BSS profit and optimal operation of power grid.
刘灵恺, 雷霞, 李竹, 黄贵鸿, 雷海. 电动汽车换电站可用电池组数动态调度策略[J]. 电工技术学报, 2017, 32(22): 242-250.
Liu Lingkai, Lei Xia, Li Zhu, Huang Guihong, Lei Hai. Dynamic Scheduling Strategy for Available Battery Number of Electric Vehicle in Battery-Swap Station. Transactions of China Electrotechnical Society, 2017, 32(22): 242-250.
[1] 吴憩棠. 我国“十城千辆”计划的进展[J]. 新能源汽车, 2009, 24(1): 15-19. Wu Qitang. Progresses in “Ten Cities & Thousand Units” plan[J]. New Energy Vehicles, 2009, 24(1): 15-19. [2] Brooks A, Lu E, Reicher D, et al. Demand dispatch[J]. IEEE Power & Energy Magazine, 2010, 8(3): 20-29. [3] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4): 1-10. Hu Zechun, Song Yonghua, Xu Zhiwei, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(4): 1-10. [4] 娄素华, 张立静, 吴耀武, 等. 低碳经济下电动汽车集群与电力系统间的协调优化运行[J]. 电工技术学报, 2017, 32(5): 176-183. Lou Suhua, Zhang Lijing, Wu Yaowu, et al. Coordination operation of electric vehicles and power system under low-carbon economy[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 176-183. [5] 戴诗容, 雷霞, 程道卫, 等. 分散式电动汽车入网策略研究[J]. 电工技术学报, 2014, 29(8): 57-63. Dai Shirong, Lei Xia, Cheng Daowei, et al. Study on V2G strategy of distributed electric vehicles[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 57-63. [6] 张谦, 蔡家佳, 刘超, 等. 基于优先权的电动汽车集群充放电优化控制策略[J]. 电工技术学报, 2015, 30(17): 117-125. Zhang Qian, Cai Jiajia, Liu Chao, et al. Optimal control strategy of cluster charging and discharging of electric vehicles based on the priority[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 117-125. [7] 黄贵鸿, 雷霞, 芦杨, 等. 考虑用户满意度的电动汽车用户侧最优智能充放电策略[J]. 电力系统保护与控制, 2015(24): 40-47. Huang Guihong, Lei Xia, Lu Yang, et al. Optimus smart charge-discharge tactics in electric vehicle user profile considering user’s satisfaction[J]. Power System Protection and Control, 2015(24): 40-47. [8] 黄贵鸿, 雷霞, 杨毅, 等. 考虑风电与用户满意度的电动汽车两层智能充放电策略[J]. 电工技术学报, 2015, 30(5): 85-97. Huang Guihong, Lei Xia, Yang Yi, et al. Two-layer smart charge-discharge stratediesfor electric vehicles considering wind generation and user’s satisfica- tion[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 85-97. [9] 姚伟锋, 赵俊华, 文福拴, 等. 基于双层优化的电动汽车充放电调度策略[J]. 电力系统自动化, 2012, 36(11): 30-37. Yao Weifeng, Zhao Junhua, Wen Fushuan, et al. A charging and discharging dispatching strategy for electric vehicles based on bi-level optimization[J]. Automation of Electric Power Systems, 2012, 36(11): 30-37. [10] 薛飞, 雷宪章, 张野飚, 等. 电动汽车与智能电网从V2G到B2G的全新结合模式[J]. 电网技术, 2012, 36(2): 29-34. Xue Fei, Lei Xianzhang, Zhang Yebiao, et al. A brand-new approach of connecting electrical vehicles with smart grid from vehicle-to-grid mode to battery-to-grid mode[J]. Power System Technology, 2012, 36(2): 29-34. [11] 高赐威, 吴茜. 电动汽车换电模式研究综述[J]. 电网技术, 2012, 36(4): 891-898. Gao Ciwei. Wu Xi. A survey on battery-swap mode of electric vehicles[J]. Power System Technology, 2012, 36(4): 891-898. [12] 刘海璇, 曾平良, 马军, 等. 基于B2G模式下电动汽车参与电网互动运行策略[J]. 电力建设, 2015, 36(7): 126-132. Liu Haixuan, Zeng Pingliang, Ma Jun, et al. Operation strategy of electric vehicles for interacting with the grid in battery to grid mode[J]. Electric Power Construction, 2015, 36(7): 126-132. [13] 曹一家, 刘易珠, 阙凌燕, 等. 换电站与电网协调的多目标双层实时充放电调度方法[J]. 电力自动化设备, 2015, 35(4): 1-7. Cao Yijia, Liu Yizhu, Que Lingyan, et al. Multi- objective bi-level real-time charging/discharging dispatch with coordination of BSS and grid[J]. Electric Power Automation Equipment, 2015, 35(4): 1-7. [14] 佟晶晶, 温俊强, 王丹, 等. 基于分时电价的电动汽车多目标优化充电策略[J]. 电力系统保护与控制, 2016, 44(1): 17-23. Tong Jingjing, Wen Junqiang, Wang Dan, et al. Multi-objective optimization charging strategy for plug-in electric vehicles based on time-of-use price[J]. Power System Protection and Control, 2016, 44(1): 17-23. [15] Sarker M R, Pandzic H, Ortega-Vazquez M A. Electric vehicle battery swapping station: Business case and optimization model[C]//International Con- ference on Connected Vehicles and Expo, Las Vegas, NV, USA, 2013: 289-294. [16] 张昌华, 孟劲松, 曹永兴, 等. 换电模式下电动汽车换电充裕度模型及仿真研究[J]. 电网技术, 2012, 36(9): 15-19. Zhang Changhua, Meng Jinsong, Cao Yongxing, A battery-swapping requirement adequacy model for electric vehicles and its simulation research[J]. 2012, 36(9): 15-19. [17] 汤波, 马世伟, 邱云, 等. 基于有序充电的换电站电池冗余度研究[J]. 电力系统自动化, 2015, 39(10): 50-55. Tang Bo, Ma Shiwei, Qiu Yun, et al. Battery redundancy of swapping station under coordinated charging[J]. Automation of Electric Power Systems, 2015, 39(10): 50-55. [18] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130. Tian Liting, Shi Shuanglong, Jia Zhuo. A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34(11): 126-130. [19] Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2008, 25(1): 371-380.