Diagnosis of Wind Turbine Planetary Gearbox Faults Based on Adaptive EEMD and Hierarchical Fractal Dimension
Li Dongdong1, 2, hou Wenlei1, Zheng Xiaoxia3, Wang Hao1
1. Electric Power Engineering Shanghai University of Electric Power Shanghai 200090 China. 2. Shanghai Higher Institution Engineering Research Center of High Efficiency Electricity Application Shanghai 200090 China. 3. Automation Engineering Shanghai University of Electric Power Shanghai 200090 China
Abstract:The main defect of the traditional ensemble empirical mode decomposition (EEMD) is that the important parameters of the added white noise are set by artificial experience. In the paper, an adaptive EEMD is proposed based on the study of the factors that caused the modal aliasing. This method could set the parameters for different signals adaptively to achieve optimal decomposition effectiveness. Firstly, the singular value decomposition (SVD) was used to decompose and reconstruct the signals. Next, the reconstruction signals were used to determine the parameters of the white noise adaptively. Finally, using the proposed method, the signals were decomposed to a series of intrinsic mode function (IMF). Fractal dimension is good for the evaluation of the characteristics of IMF, so it is effective to identify different types of vibration signals. The hierarchical fractal dimension was used to improve the accuracy and efficiency of signal recognition. The experimental and simulation results of the gearbox of the wind turbine show that the proposed method is more effective compared with the existing techniques.
李东东, 周文磊, 郑小霞, 王浩. 基于自适应EEMD和分层分形维数的风电机组行星齿轮箱故障检测[J]. 电工技术学报, 2017, 32(22): 233-241.
Li Dongdong, hou Wenlei, Zheng Xiaoxia, Wang Hao. Diagnosis of Wind Turbine Planetary Gearbox Faults Based on Adaptive EEMD and Hierarchical Fractal Dimension. Transactions of China Electrotechnical Society, 2017, 32(22): 233-241.
[1] Huang Norden E, Shen Zheng, Long Steven R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceeding of the Royal Society: A Mathematical Physical & Engineering Sciences, 1998, 454: 903-995. [2] Chen Chih-Sung, Jeng Yih, Two-dimensional non- linear geophysical data filtering using the multidi- mensional EEMD method[J]. Journal of Applied Geophysics, 2014, 111: 256-270. [3] Wang Wenchuan, Chau Kwok-wing, Qiu Lin, et al. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition[J]. Environmental Research 2015, 139: 46-54. [4] Kevin Kærgaard, Søren Hjøllund Jensen, Sadasivan Puthusserypady. A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising[J]. Biomedical Signal Processing and Control, 2016, 25: 178-187. [5] 孙曙光, 庞毅, 王景芹, 等. 一种基于新型小波阈值去噪预处理的EEMD谐波检测方法[J]. 电力系统保护与控制, 2016, 44(2): 42-48. Sun Shuguang, Pang Yi, Wang Jingqin, et al. EEMD harmonic detection method based on the new wavelet threshold denoising pretreatment[J]. Power System Protection and Control, 2016, 44(2): 42-48. [6] 张佩, 赵书涛, 申路, 等. 基于改进EEMD的高压断路器振声联合故障诊断方法[J]. 电力系统保护与控制, 2014, 42(8): 77-81. Zhang Pei, Zhao Shutao, Shen Lu. Research on vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breaker based on improved EEMD[J]. Power System Protection and Control, 2014, 42(8): 77-81. [7] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解总能量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236. Sun Yihang, Wu Jianwen, Lian Shijun, et al. Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transaction of China Electrical Social, 2014, 29(3): 228-236. [8] 宋亚奇, 周国亮, 朱永利, 等. 云平台下并行总体经验模态分解局部放电信号去噪方法[J]. 电工技术学报, 2015, 30(18): 213-222. Song Yaqi, Zhou Guoliang, Zhu Yongli, et al. Research on parallel ensemble empirical mode decomposition denoising method for partial discharge signals based on cloud platform[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 213-222. [9] Matej Žvokelj, Samo Zupan, Ivan Prebil. EEMD- based multiscale ICA method for slewing bearing fault detection and diagnosis[J]. Journal of Sound and Vibration, 2016, 370: 394-423. [10] 郭艳平, 颜文俊, 包哲静, 等. 基于经验模态分解和散度指标的风力发电机滚动轴承故障诊断方法[J]. 电力系统保护与控制, 2012, 40(17): 83-87. Guo Yanping, Yan Wenjun, Bao Zhejing, et al. Fault diagnosis of bearing in wind turbine based on empirical mode decomposition and divergence index[J]. Power System Protection and Control, 2012, 40(17): 83-87. [11] Wu Zhaohua, Huang Norden E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 10.1142/S17935369090000/47. [12] 陈略, 唐歌实, 訾艳阳, 等. 自适应EEMD方法在心电信号处理中的应用[J]. 数据采集与处理, 2011, 26(3): 362-366. Chen Lue, Tang Geshi, Zi Yanyang. Application of adaptive ensemble empirical mode decomposition method to electrocardiogram signal processing[J]. Journal of Data Acquisition & Processing, 2011, 26(3): 362-366. [13] 雷亚国, 孔德同, 李乃鹏, 等. 自适应总体经验模式分解及其在行星齿轮箱故障诊断中的应用[J]. 机械工程学报, 2014, 50(3): 64-70. Lei Yaguo, Kong Detong, Li Naipeng, et al. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gear- boxes[J]. Journal of Mechanical Engineering, 2014, 50(3): 64-70. [14] 孔德同, 刘庆超, 雷亚国, 等. 一种改进的EEMD方法及其应用研究[J]. 振动工程学报, 2015, 28(6): 1015-1021. Kong Detong, Liu Qingchao, Lei Yaguo, et al. The improved EEMD method and its application[J]. Journal of Vibration Engineering, 2015, 28(6): 1015-1021. [15] 王建国, 李建, 万旭东. 基于奇异值差分谱和局域均值分解的滚动轴承故障特征提取方法[J]. 机械工程学报, 2015, 51(3): 104-110. Wang Jianguo Li Jian Wan Xudong, Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition[J]. Journal of Mechanical Engineering, 2015, 51(3): 104-110. [16] Mei Jianmin, Liu Yuanhong, Xiao Yunkui, et al. Extraction of transmission bearing fault characters based on EMD and fractal theory[C]//IEEE 3rd International Conference on Communication Soft- ware and Networks (ICCSN), Xi'an, China, 2011: 215-219. [17] 杨凯, 张认成, 杨建红, 等. 基于分形维数和支持向量机的串联电弧故障诊断方法[J]. 电工技术学报, 2016, 31(2): 70-77. Yang Kai, Zhang Rencheng, Yang Jianhong, et al. Series arc fault diagnostic method based on fractal dimension and support vector machine[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(2): 70-77. [18] 李建毅, 石林锁, 滕明春, 等. 基EMD和分形的齿轮箱故障特征提取[J]. 陕西科技大学学报, 2013, 31(1): 115-120. Li Jianyi, Shi Linsuo, Teng Chunming, et al. Extaction of transmission bearing fault characters based on EMD fractal technology[J]. Journal of Shanxi University of Science& Tecnology, 2013, 31(1): 115-120.