The Medium and Long-Term Load Forecasting Based on Improved D-S Evidential Theory
Wu Yaowu1, Lou Suhua1, Lu Siyu1, Qiao Hui2, Kang Futian3
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China2. Hefei Electric Power Supply Bureau Hefei 230000 China 3. Beijing Electric Power Supply Bureau Beijing 100031 China
Abstract:A medium and long-term load forecasting model is proposed for power system, which is based on improved evidence theory. Evidential theory is able to integrate lots of information provided by different evidential source, which helps to make correct analysis and decisions. The combination rules of Dempster and Yager are used here to mix various basic forecasting methods. Expert advice is considered to be part of the model, so that the improved forecasting model is more meaningful practically, and the load forecasting accuracy has been improved apparently. Using this method to study one provincial grid in china, the results prove the validity of the method presented in this paper.
吴耀武, 娄素华, 卢斯煜, 乔惠, 康福填. 基于改进的D-S证据理论的中长期负荷预测方法[J]. 电工技术学报, 2012, 27(8): 157-162.
Wu Yaowu, Lou Suhua, Lu Siyu, Qiao Hui, Kang Futian. The Medium and Long-Term Load Forecasting Based on Improved D-S Evidential Theory. Transactions of China Electrotechnical Society, 2012, 27(8): 157-162.
[1] Kandil M S, EL-Debeiky S M, Hasanien N E. Overview and comparison of long-term forecasting techniques for a fast developing utility: part 1[J]. Electric Power Systems Research, 2001, 58(1): 11-17. [2] Soliman S A, AL-Hamadi H M. Long-term/mid-term electric load forecasting based on short-term correlation and annual growth[J]. Electrical Power System Research, 2005, 74(3): 353-361. [3] 朱芸, 乐秀璠. 可变参数无偏灰色模型的中长期负荷预测[J]. 电力自动化设备, 2003, 23(4): 25-27. Zhu Yun, Le Xiufan. Unbiased grey-forecasting model with unfixed parameter for long-term load[J]. Electric Power Automation Equipment, 2003, 23(4): 25-27. [4] 谢勃. 中长期负荷预测的不确定性模型研究与应用[D]. 南京: 河海大学, 2007. [5] 周中明, 李建平, 张鑫, 等. ANN在电力系统负荷预测中的应用[J]. 电力系统及其自动化学报, 2003, 15(2): 36-39. Zhou Zhongming, Li Jianping, Zhang Xin, et al. The application of ANN in middle term load forecasting of power system[J]. Proceedings of the CSU-EPSA, 2003, 15(2): 36-39. [6] 陈泽淮, 张尧, 武志刚. RBF神经网络在中长期负荷预测中的应用[J]. 电力系统及其自动化学报, 2006, 18(1): 15-19. Chen Zehuai, Zhang Yao, Wu Zhigang. Application of RBF neural network in medium and long-term load forecasting[J]. Proceedings of the CSU-EPSA, 2006, 18(1): 15-19. [7] Vermaak J, Botha E C. Recurrent neural networks for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(1): 126-132. [8] 曾鸣, 冯义, 刘达, 等. 基于证据理论的多模型组合电价预测[J]. 中国电机工程学报, 2008, 28(16): 84-89. Zeng Ming, Feng Yi, Liu Da, et al. Electricity price forecasting based on multi-models combined by evidential theory[J]. Proceedings of the CSEE, 2008, 28(16): 84-89. [9] 李如琦, 唐卓贞, 唐武斌, 等. 证据理论在短期负荷预测相似日选择中的应用[J]. 继电器, 2008, 36(7): 34-37. Li Ruqi, Tang Zhuozhen, Tang Wubin, et al. Application of evidence theory into select similar days for short-term load forecasting[J]. Relay, 2008, 36(7): 34-37. [10] 叶在福, 单渊达. 基于信度的不确定性推理——证据理论及其在电力系统规划中的应用[J]. 电力系统及其自动化工程学报, 2000, 12(3): 5-8. Ye Zaifu, Shan Yuanda. Uncertainty reasoning based on belief degree-evidential theory and applications in power system planning[J]. Proceedings of the CSU-EPSA, 2000, 12(3): 5-8. [11] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000(8): 117-119. Sun Quan, Ye Xiuqing, Gu Weikang. A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000(8): 117-119. [12] Yager R R. On the dempster-shafer framework and new combination rules[J]. Information Science, 1989, 41(2): 93-137. [13] 倪明, 高晓萍, 单渊达. 证据理论在中期负荷预测中的应用[J]. 中国电机工程学报, 1997, 17(3): 1999-2003. Ni Ming, Gao Xiaoping, Shan Yuanda. Application of evidence theory into middle term load forecasting[J]. Proceedings of the CSEE, 1997, 17(3): 1999-2003.