The High Reliability Supply Path Searching Method Based on the Operational Reliability Theory
Liu Manjun1, Cheng Lin1, Huang Daoshan2, Ye Xiaohui3, Xu Zhenhua2
1. State Key Lab of Control and Simulation of Power Systems and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China; 2. Electric Power Research Institute of State Grid Fujian Electric Power Company Fuzhou 350003 China; 3. China Electric Power Research Institute Cooperation Beijing 100192 China
Abstract:For an important customer in the power system, there are more than one electricity supply path to maintain the supply reliability of the customer. Therefore, it is necessary to evaluate the real-time reliability of different supply paths considering various outage factors and locate the most reliable supply path. This paper proposes an improved evidence theory and presents a method to acquire the outage rate of electrical equipment considering various outage factors. The correlations between the various outage factors and critical outage factor are analyzed, and then an integrated outage rate model is established considering the subjective judgement and objective data based on the improved evidence theory. Subsequently, a method to find out the most reliable supply path is put forward. This outage rate model can be used to discover the potential outage components in the current operating condition, and also can be further used to search the higher reliability supply path for customers.
刘满君, 程林, 黄道姗, 叶小晖, 徐振华. 基于运行可靠性理论的高可靠性供电路径搜索方法[J]. 电工技术学报, 2019, 34(14): 3004-3011.
Liu Manjun, Cheng Lin, Huang Daoshan, Ye Xiaohui, Xu Zhenhua. The High Reliability Supply Path Searching Method Based on the Operational Reliability Theory. Transactions of China Electrotechnical Society, 2019, 34(14): 3004-3011.
[1] 孙元章, 程林, 刘海涛. 基于实时运行状态的电力系统运行可靠性评估[J]. 电网技术, 2005, 29(15): 6-12. Sun Yuanzhang, Cheng Lin, Liu Haitao.Power system operating reliability evaluation based on real- time operating state[J]. Power System Technology, 2005, 29(15): 6-12. [2] 孙元章, 程林, 刘海涛, 等. 电力系统运行可靠性评估理论与方法. 大型互联电网运行可靠性基础研究(I)[M]. 北京: 清华大学出版社, 2008. [3] 孙元章, 程林, 何剑. 电力系统运行可靠性理论[M]. 北京: 清华大学出版社, 2012. [4] 郭永基. 电力系统可靠性分析[M]. 北京: 清华大学出版社, 2003. [5] He Jian, Cheng Lin, Sun Yuanzhang.Transformer real-time reliability model based on operating conditions[J]. Journal of Zhejiang University: Science A, 2007, 8(3): 378-383. [6] 王有元, 袁园, 李剑, 等. 变压器油纸绝缘可靠性的威布尔混合评估模型[J]. 高电压技术, 2010, 36(4): 28-34. Wang Youyuan, Yuan Yuan, Li Jian, et al.Weibull mixed evaluation model for reliability of oil-paper insulation in transformer[J]. High Voltage Engi- neering, 2010, 36(4): 28-34. [7] 刘海涛, 程林, 孙元章, 等. 基于实时运行条件的元件停运因素分析与停运率建模[J]. 电力系统自动化, 2007, 31(7): 6-11. Liu Haitao, Cheng Lin, Sun Yuanzhang, et al.Outage factors analysis and outage rate model of components based on operating conditions[J]. Automation of Electric Power Systems, 2007, 31(7): 6-11. [8] Bhuiyan M R, Allan R N.Inclusion of weather effects in composite system reliability evaluation using sequential simulation[J]. IEE Proceedings-Generation Transmission Distribution, 1994, 141(6): 575-584. [9] Alvehag K, Söde L.A stochastic weather dependent reliability model for distribution systems[J]. Proceeding of the 10th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Rincon, Puerto Rico, 2008: 243-250. [10] 周远翔, 鲁斌, 李震宇, 等. 蒙特卡罗法计算线路雷击跳闸率随机过程研究[J]. 高电压技术, 2007, 33(5): 1-5. Zhou Yuanxiang, Lu Bin, Li Zhenyu, et al.Selection of random processes in application of Monte Carlo method to calculation of the lightning flash-over rate of transmission lines[J]. High Voltage Engineering, 2007, 33(5): 1-5. [11] 赵芝, 石季英, 袁启海, 等. 输电线路的雷击跳闸概率预测计算新方法[J]. 电力系统自动化, 2015, 39(3): 51-58, 139. Zhao Zhi, Shi Jiying, Yuan Qihai, et al.A new prediction calculation method of transmission lines lightning trip probability[J]. Automation of Electric Power Systems, 2015, 39(3): 51-58, 139. [12] Broström E, Söder L.Modelling of ice storms for power transmission reliability calculations[C]//15th Power Systems Computation Conference PSCC 2005, Liege, Belgium, 2005: 1-8. [13] 陆佳政, 张红先, 彭继文, 等. 基于皮尔逊III型概率分布的湖南电网覆冰重现期计算[J]. 电工技术学报, 2013, 28(1): 80-86. Lu Jiazheng, Zhang Hongxian, Peng Jiwen, et al.Calculation of hunan power grid icing recurrence interval based on pearson Ⅲ type probability distri- bution[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 80-86. [14] 段杰, 王秀丽, 侯雨伸. 基于模糊专家系统的输电线路分段冰风荷载等效停运率模型[J]. 电工技术学报, 2016, 31(8): 220-228. Duan Jie, Wang Xiuli, Hou Yushen.Piecewise equivalent model of ice disaster impact on outage rate of transmission lines using fuzzy expert system[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 220-228. [15] 薛禹胜, 谢云云, 文福拴, 等. 关于电力系统相继故障研究的评述[J]. 电力系统自动化, 2013, 37(19): 1-9. Xue Yusheng, Xie Yunyun, Wen Fushuan, et al.A review on cascading failures in power systems[J]. Automation of Electric Power Systems, 2013, 37(19): 1-9. [16] Sun Yuanzhang, Wang Peng, Cheng Lin, et al.Operational reliability assessment of power systems considering condition-dependent failure rate[J]. IET Generation Transmission & Distribution, 2010, 4(1): 60-71. [17] 何剑, 程林, 孙元章, 等. 条件相依的输变电设备短期可靠性模型[J]. 中国电机工程学报, 2009, 29(7): 39-46. He Jian, Cheng Lin, Sun Yuanzhang, et al.Condition dependent short-term reliability models of trans- mission equipment[J]. Proceedings of the CSEE, 2009, 29(7): 39-46. [18] Yu Xingbin, Singh C.A practical approach for integrated power system vulnerability analysis with protection failures[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1811-1820. [19] 王英英, 罗毅, 涂光瑜, 等. 电力系统连锁故障的关联模型[J]. 电工技术学报, 2012, 27(2): 204-209. Wang Yingying, Luo Yi, Tu Guanyu, et al.Correlation model of cascading failures in power system[J]. Transactions of China Electrotechnical Society, 27(2): 204-209. [20] 中国电力企业联合会. GB 50545-2010 110kV-750kV架空输电线路设计规范[S]. 北京: 中国计划出版社, 2010. [21] 中华人民共和国电力工业部. DL/T 620-1997 交流电气装置的过电压保护和绝缘配合[S]. 北京: 中国电力出版社, 1997. [22] 倪明, 单渊达. 证据理论及其应用[J]. 电力系统自动化, 1996, 20(3): 76-80. Ni Ming, Shan Yuanda.Evidence theory and appli- cation[J]. Automation of Electric Power Systems, 1996, 20(3): 76-80.