Influence of Space Radiation Environment on Critical Components of Spacecraft Distributed Power System and Countermeasures
Zhou Lidan1, Yan Chaoxin1, Yao Gang2, Hu Wenbin3, Zhao Min4
1. College of Electric Power Engineering Shanghai University of Electric Power Shanghai 200090 China; 2. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China; 3. Shanghai Institute of Space Power-Sources Shanghai 200240 China; 4. School of Naval Architecture Ocean & Civil Engineering Shanghai Jiao Tong University Shanghai 200240 China
Abstract:The distributed power system of spacecraft will suffer continuous radiation from different sorts of high-energy particles during the operation process, which will lead to performance degradation and fault excitation. In particular, once the integrated key power components break down, the safe and reliable operation of spacecraft in orbit will be seriously affected. Based on the distributed power system onboard spacecraft, this paper firstly reviewed various radiation environments and common radiation effects. The performance degradation and fault excitation mechanism of solar cells, lithium batteries, power electronic devices, insulation materials, power control devices and other key components in radiation environment are analyzed. Accordingly, the radiation countermeasures in terms of material, manufacturing process, circuit and layout design, external protection, software algorithm, reliability assessment and fault state perception are proposed. Finally, it points out the key issues to be further studied and provides reference for further research in this field.
周荔丹, 闫朝鑫, 姚钢, 胡文斌, 赵敏. 空间辐射环境对航天器分布式电力系统关键部件的影响及应对策略[J]. 电工技术学报, 2022, 37(6): 1365-1380.
Zhou Lidan, Yan Chaoxin, Yao Gang, Hu Wenbin, Zhao Min. Influence of Space Radiation Environment on Critical Components of Spacecraft Distributed Power System and Countermeasures. Transactions of China Electrotechnical Society, 2022, 37(6): 1365-1380.
[1] 杨康. 航天器关键部件故障诊断研究[D]. 西安: 西安工业大学, 2018. [2] 孙慧, 徐抒岩, 孙守红, 等. 航天电子元器件抗辐照加固工艺[J]. 电子工艺技术, 2013, 34(1): 44-46. Sun Hui, Xu Shuyan, Sun Shouhong, et al.Resist radiation hardening technology on aerospace electronic components[J]. Electronics Process Technology, 2013, 34(1): 44-46. [3] 罗雁横, 张瑞君. 空间辐射环境与光器件抗辐射加固技术进展[J]. 电子与封装, 2009, 9(8): 43-47. Luo Yanheng, Zhang Ruijun.Space radiation environment and resist-radiation hardening Technology progress of optical devices[J]. Electronics and Packaging, 2009, 9(8): 43-47. [4] 禹金标. 用于空间探测的电子元器件辐照性能研究[D]. 郑州: 郑州大学, 2015. [5] 冯彦君, 华更新, 刘淑芬. 航天电子抗辐射研究综述[J]. 宇航学报, 2007, 28(5): 1071-1080. Feng Yanjun, Hua Gengxin, Liu Shufen.Radiation hardness for space electronics[J]. Journal of Astronautics, 2007, 28(5): 1071-1080. [6] 贾文远, 安军社. COTS器件的空间辐射效应与对策分析[J]. 电子元件与材料, 2015, 34(11): 1-4. Jia Wenyuan, An Junshe.Analyze of space radiation effect and countermeasures of COTS components[J]. Electronic Components and Materials, 2015, 34(11): 1-4. [7] 郑汉生, 蔡明辉, 刘小旭, 等. 星用介质材料表面充放电效应试验研究[J]. 宇航总体技术, 2019, 3(3): 43-47. Zheng Hansheng, Cai Minghui, Liu Xiaoxu, et al.Experimental research on surface charging and discharging of space-used dielectrics[J]. Astronautical Systems Engineering Technology, 2019, 3(3): 43-47. [8] 刘尚合, 胡小锋, 原青云, 等. 航天器充放电效应与防护研究进展[J]. 高电压技术, 2019, 45(7): 2108-2118. Liu Shanghe, Hu Xiaofeng, Yuan Qingyun, et al.Research progress in charging-discharging effects and protection of spacecraft[J]. High Voltage Engineering, 2019, 45(7): 2108-2118. [9] 田鹏宇. 空间辐射及温度致砷化镓太阳电池性能衰减分析[D]. 南京: 南京航空航天大学, 2019. [10] 侯欣宾, 王立, 李庆民, 等. 空间太阳能电站高压大功率电力传输关键技术综述[J]. 电工技术学报, 2018, 33(14): 3385-3395. Hou Xinbin, Wang Li, Li Qingmin, et al.Review of key technologies for high-voltage and high-power transmission in space solar power station[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3385-3395. [11] 冯伟泉, 韩国经, 刘业楠, 等. 航天器供配电分系统电弧短路故障及其防护[J]. 航天器工程, 2013, 22(2): 65-70. Feng Weiquan, Han Guojing, Liu Yenan, et al.Spacecraft EPDS arc short circuit failure and prevention[J]. Spacecraft Engineering, 2013, 22(2): 65-70. [12] 安晓雨, 谭玲生. 空间飞行器用锂离子蓄电池储能电源的研究进展[J]. 电源技术, 2006, 30(1): 70-73. An Xiaoyu, Tan Lingsheng.Development of lithium ion batteries as new power sources for space application[J]. Chinese Journal of Power Sources, 2006, 30(1): 70-73. [13] 吴慧. 辐射环境下锂电池电极材料的锂化变形及失效机理研究[D]. 湘潭: 湘潭大学, 2019. [14] Jones J P, Jones S C, Billings K J, et al.Radiation effects on lithium CFX batteries for future spacecraft and landers[J]. Journal of Power Sources, 2020, 471: 228464. [15] Qiu Jie, He Dandan, Sun Mingzhai, et al.Effects of neutron and gamma radiation on lithium-ion batteries[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2015, 345: 27-32. [16] Tan Chuting, Bashian N H, Hemmelgarn C W, et al.Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance[J]. Journal of Power Sources, 2017, 357: 19-25. [17] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Performance correlation and temperature applicability of li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2063-2073. [18] Tan Chuting, Lyons D J, Pan Ke, et al.Radiation effects on the electrode and electrolyte of a lithium-ion battery[J]. Journal of Power Sources, 2016, 318: 242-250. [19] 李致远. 半导体器件辐射效应及抗辐射加固[J]. 现代电子技术, 2006, 19: 138-141. Li Zhiyuan.Radiation effect and reinforce of radiation resistance for semiconductor device[J]. Modern Electronics Technique, 2006, 19: 138-141. [20] 楼建设, 蔡楠, 王佳, 等. 典型VDMOSFET单粒子效应及电离总剂量效应研究[J]. 核技术, 2012, 35(6): 428-433. Lou Jianshe, Cai Nan, Wang Jia, et al.Single event effects and total ionizing dose effects of typical VDMOSFET devices[J]. Nuclear Technology, 2012, 35(6): 428-433. [21] Shenai K, Galloway K F, Schrimpf R D.The effects of space radiation exposure on power MOSFETs: a review[J]. International Journal of High Speed Electronics and Systems, 2004, 14(2): 445-463. [22] 于成浩. 功率MOSFET单粒子效应及辐射加固研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. [23] 古云飞. IGBT的辐照效应仿真分析与加固研究[D]. 成都: 电子科技大学, 2016. [24] Zerarka M, Austin P, Toulon G, et al.Behavioral study of single-event burnout in power devices for natural radiation environment applications[J]. IEEE Transactions on Electronics Devices, 2012, 59(12): 3482-3488. [25] 唐卫斌. 抗辐照加固Boost型DC/DC转换器的设计与实现[D]. 西安: 西安电子科技大学, 2011. [26] 李宗辉, 陈林艳, 陈艺伟. 10kV交联聚乙烯电缆绝缘老化超低频介损试验的研究[J]. 电气技术, 2020, 21(10): 83-87. Li Zonghui, Chen Linyan, Chen Yiwei.Study on ultra-low frequency dielectric loss detection of 10kV cross-linked polyethylene aged cable[J]. Electrical Engineering, 2020, 21(10): 83-87. [27] 谢庆, 张采芹, 闫纪源, 等. 不均匀直流电场下绝缘材料表面电荷积聚与消散特性[J]. 电工技术学报, 2019, 34(4): 817-830. Xie Qing, Zhang Caiqin, Yan Jiyuan, et al.Study on accumulation and dissipation of surface charges of insulating materials under uneven DC field[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 817-830. [28] 王俊, 李得天, 杨生胜, 等. 1.5MeV电子辐照下高压电缆内带电效应研究[J]. 真空与低温, 2015, 21(5): 269-272. Wang Jun, Li Detian, Yang Shengsheng, et al.Study of high voltage cable internal charging effect under irradiation by 1.5MeV electron beam[J]. Vacuum and Cryogenics, 2015, 21(5): 269-272. [29] 郝宁, 罗家俊, 刘海南, 等. SOI工艺抗辐照SRAM型FPGA设计与实现[J]. 宇航学报, 2018, 39(9): 1047-1053. Hao Ning, Luo Jiajun, Liu Hainan, et al.A radiation hardened SRAM-based FPGA implemented in SOI process[J]. Journal of Astronautics, 2018, 39(9): 1047-1053. [30] 邢克飞, 杨俊, 季金明. 空间辐射效应对SRAM型FPGA的影响[J]. 微电子学与计算机, 2006, 23(12): 107-110. Xing Kefei, Yang Jun, Ji Jinming.Radiation effect to SRAM-based FPGA in space[J]. Microellectronics & Computer, 2006, 23(12): 107-110. [31] 邢克飞, 张传胜, 王京, 等. 数字信号处理器抗辐射设计技术研究[J]. 应用基础与工程科学学报, 2006, 14(4): 572-578. Xing Kefei, Zhang Chuansheng, Wang Jing, et al.Study on the anti-radiation technique for digital signal processor[J]. Journal of Basic Science and Engineering, 2006, 14(4): 572-578. [32] 高剑锋, 张恒. 空间太阳电池抗辐照研究[J]. 电源技术, 2017, 41(7): 1100-1103. Gao Jianfeng, Zhang Heng.Anti-irradiation research of space solar cells[J]. Chinese Journal of Power Sources, 2017, 41(7): 1100-1103. [33] 孙承月. 太阳能电池板玻璃盖片的空间带电粒子环境损伤效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [34] Espinet-Gonzalez P, Barrigón E, Chen Yang, et al.Nanowire solar cells: a new radiation hard PV technology for space applications[J]. IEEE Journal of Photovoltaics, 2020, 10(2): 502-507. [35] Espinet-Gonzalez P, Barrigón E, Otnes G, et al.Radiation tolerant nanowire array solar cells[J]. ACS Nano, 2019, 13(11): 12860-12869. [36] Hubbard S, Bailey C, Polly S, et al.Nanostructured photovoltaics for space power[J]. Journal of Nanophotonics, 2009, 3(1): 031880. [37] 郁济敏, 赵志国. 国外空间多结太阳电池技术进展[J]. 电源技术, 2015, 39(6): 1340-1343. Yu Jimin, Zhao Zhiguo.Development of space multi-junction solar cells at abroad[J]. Chinese Journal of Power Sources, 2015, 39(6): 1340-1343. [38] 张帆, 葛圣胤, 刘智. 空间高轨高压太阳电池阵静电防护技术研究[J]. 装备环境工程, 2018, 15(7): 55-60. Zhang Fan, Ge Shengyin, Liu Zhi.ESD protection of GEO/MEO orbit high-voltage solar cell arrays[J]. Equipment Environmental Engineering, 2018, 15(7): 55-60. [39] 武明志. 空间等离子体诱发太阳能电池表面充放电效应的仿真分析[D]. 南京: 南京航空航天大学, 2018. [40] 刘浩, 刘尚合, 苏银涛, 等. 基于网格状ITO薄膜的航天器太阳电池阵静电放电防护[J]. 航空学报, 2015, 36(10): 3494-3500. Liu Hao, Liu Shanghe, Su Yintao, et al.Electrostatic discharge protection of spacecraft solar cell array based on meshed ITO film[J]. Chinese Journal of Aeronautics, 2015, 36(10): 3494-3500. [41] 赵力, 杨晓花. 辐射效应对半导体器件的影响及加固技术[J]. 电子与封装, 2010, 10(8): 31-36. Zhao Li, Yang Xiaohua.The radiation effects and hardened technologies of semiconductor device[J]. Electronics and Packaging, 2010, 10(8): 31-36. [42] 乌江, 康亚丽, 张振军, 等. 两种典型星用聚合物介质抗内带电改性防护技术研究[J]. 真空与低温, 2012, 18(1): 26-32. Wu Jiang, Kang Yali, Zhang Zhenjun, et al.Study on the deep dielectric charging protection technology of two typical polymers on spacecraft[J]. Vacuum and Cryogenics, 2012, 18(1): 26-32. [43] 乌江, 白婧婧, 沈宾, 等. 航天器抗内带电介质改性方法[J]. 中国空间科学技术, 2010, 30(2): 49-54. Wu Jiang, Bai Jingjing, Shen Bin, et al.Formation mechanism of anti-deep-charged modification for space dielectric[J]. Chinese Space Science and Technology, 2010, 30(2): 49-54. [44] 乌江, 白婧婧, 沈宾, 等. 航天器介质内电场形成机理与防护方法分析[J]. 导弹与航天运载技术, 2009(5): 13-17. Wu Jiang, Bai Jingjing, Shen Bin, et al.Study on formation mechanism of inner electric field in dielectric of spacecraft and protection methods[J]. Missiles and Space Vehicles, 2009(5): 13-17. [45] Fay D, Shye A, Bhattacharya S, et al.An adaptive fault-tolerant memory system for FPGA-based architectures in the space environment[C]//The Second NASA/ESA Conference on Adaptive Hard-ware and Systems (AHS 2007), Edinburgh, UK, 2007: 250-257. [46] 夏辉, 唐威, 黄媛媛, 等. 基于三模冗余加固的ASIC设计与实现[J]. 微处理机, 2015, 36(5): 1-3, 8. Xia Hui, Tang Wei, Huang Yuanyuan, et al.Research of radiation harden based on triple modular redundancy for ASIC[J]. Microprocessors, 2015, 36(5): 1-3, 8. [47] 梁贺斌. 基于可信度的DSP软件冗余容错表决方法研究[D]. 北京: 中国科学院国家空间科学中心, 2016. [48] 杨玉辰, 周国昌, 巨艇, 等. 三模冗余反馈纠错技术在星载电路加固设计中的应用与实现[J]. 空间电子技术, 2017, 14(2): 34-37. Yang Yuchen, Zhou Guochang, Ju Ting, et al.Design and implementation of TMR and feedback correction technology in satellite's radiation-hardened circuits[J]. Space Electronic Technology, 2017, 14(2): 34-37. [49] 祝名, 朱恒静, 刘迎辉, 等. 一种检测和校正存储器双错的低冗余加固方法[J]. 宇航学报, 2014, 35(8): 924-930. Zhu Ming, Zhu Hengjing, Liu Yinghui, et al.A low redundancy radiation hardened scheme for double error detection and correction in memories[J]. Journal of Astronautics, 2014, 35(8): 924-930. [50] Alkady G I, Amer H H, Daoud R M, et al.An adaptive multi-factor fault-tolerance selection scheme for FPGAs in space applications[C]//The 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2018: 1-4. [51] 曾光, 刘许强, 杨娜, 等. 半导体材料辐射效应的表征与分析[J]. 半导体技术, 2017, 42(1): 61-68. Zeng Guang, Liu Xuqiang, Yang Na, et al.Characterization and analysis of radiation effects of semiconductor materials[J]. Semiconductor Technology, 2017, 42(1): 61-68. [52] 韩光. 双极晶体管总剂量辐射效应及其表征方法研究[D]. 西安: 西安电子科技大学, 2010. [53] 孙鹏. 电子元器件辐射退化灵敏表征方法研究[D]. 西安: 西安电子科技大学, 2013. [54] 赵鹏飞. GaAs太阳电池在空间辐射条件下性能衰减的研究[D]. 南京: 南京航空航天大学, 2017. [55] 赵瑛. 基于噪声的pn结材料辐射损伤评价方法研究[D]. 西安: 西安电子科技大学, 2011. [56] 张燕, 方瑞明. 基于油中溶解气体动态网络标志物模型的变压器缺陷预警与辨识[J]. 电工技术学报, 2020, 35(9): 2032-2041. Zhang Yan, Fang Ruiming.Fault detection and identification of transformer based on dynamical network marker model of dissolved gas in oil[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2032-2041. [57] 黄先进, 凌超, 孙湖, 等. 多芯并联封装IGBT缺陷与失效先导判据[J]. 电工技术学报, 2019, 34(增刊2): 518-527. Huang Xianjin, Ling Chao, Sun Hu, et al.The leading criterion for defects and failures in multi-chip parallel package IGBTs[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 518-527. [58] 李兵, 崔介兵, 何怡刚, 等. 基于能量谱熵及小波神经网络的有源中性点钳位三电平逆变器故障诊断[J]. 电工技术学报, 2020, 35(10): 2216-2225. Li Bing, Cui Jiebing, He Yigang, et al.Fault diagnosis of active neutral point clamped three-level inverter based on energy spectrum entropy and wavelet neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2216-2225. [59] 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43(1): 2-14. Yang Ting, Zhao Liyuan, Wang Chengshan.Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(1): 2-14. [60] 周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019, 43(4): 180-191. Zhou Niancheng, Liao Jianquan, Wang Qianggang, et al.Analysis and prospect of deep learning application in smart grid[J]. Automation of Electric Power Systems, 2019, 43(4): 180-191. [61] 刘宾礼, 肖飞, 罗毅飞, 等. 基于集电极漏电流的IGBT健康状态监测方法研究[J]. 电工技术学报, 2017, 32(16): 183-193. Liu Binli, Xiao Fei, Luo Yifei, et al.Investigation into the health condition monitoring method of IGBT based on collector leakage current[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 183-193.