Effect of Temperature on Moisture Adsorption and Desorption in Cellulose Insulation
Yang Chaojie1,2, Liu Yunpeng1,2, Zhao Tao1,2, Yang Jiajun1,2, Liu Yijin1,2
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China;
2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
The rise and fall of the internal temperature of the power transformer will cause the moisture to change its distribution and aggregation location, and the local high moisture content will seriously affect the electrical strength of the oil-paper insulation. Most of the previous studies are limited to extracting characteristic quantities from experimental results for quantitative analysis, and lack the exploration and explanation of macroscopic experimental phenomena from the microscopic level to reflect the mechanism of the changes in the adsorption and desorption characteristics of moisture in cellulose insulating materials.
In this paper, the molecular dynamics method was used to establish three oil-cellulose mixed systems (OCS) with different water contents at the 105-atom scale: in system I, the water content of the oil domain is 0.3%, while the cellulose domain does not contain water; in systems Ⅱ and Ⅲ, the water content of the cellulose domain is 3.5% and 5.7%, respectively, while the oil domain does not contain water. The whole system was divided into three regions from the z direction: cellulose domain, interfacial domain and oil domain. Temperature rise and temperature drop simulations were carried out respectively, and the variation rules of the number of water molecules (NW) in the interfacial domain and the oil domain were obtained. By analyzing the NW, solvent-accessible surface area (SASA) and microscopic scanning electron microscopy (SEM) maps of the interfacial and oil domains in cellulose insulation, the effects of different temperatures on the cellulose insulation were investigated. The effect of different temperatures on the adsorption and desorption of water in cellulose insulation was investigated.
The results show that after the reverse cooling of the high-temperature system, the water molecules in the oil domain migrate rapidly to the cellulose domain, while the irreversible deterioration of cellulose after high temperature leads to the weakening of its adsorption capacity. As a result, a large amount of water is retained in the interfacial domain. For the temperature rise simulation, the higher the temperature, the more water accumulated in the oil and interfacial domains, and the stronger the desorption of water by cellulose. It is worth noting that the NW of the interfacial domain is not a purely increasing trend, but an oscillating increasing and decreasing trend that decreases first and then increases. The higher the temperature, the more obvious the trend is. The work has important theoretical value for the real-time monitoring of moisture in oil-immersed power equipment and the evaluation of its insulation performance.
杨超杰, 刘云鹏, 赵涛, 杨家骏, 刘一瑾. 温度对纤维素绝缘中水分吸附和解吸的影响[J]. 电工技术学报, 2025, 40(1): 300-311.
Yang Chaojie, Liu Yunpeng, Zhao Tao, Yang Jiajun, Liu Yijin. Effect of Temperature on Moisture Adsorption and Desorption in Cellulose Insulation. Transactions of China Electrotechnical Society, 2025, 40(1): 300-311.
[1] 周利军, 黎枝鑫, 廖维, 等. 受潮对硅油浸渍绝缘纸的频域介电性能影响[J]. 电工技术学报, 2022, 37(16): 4225-4234.
Zhou Lijun, Li Zhixin, Liao Wei, et al.Influence of moisture on frequency domain spectroscopy of silicone oil impregnated insulation paper[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4225-4234.
[2] 姚欢民, 穆海宝, 张大宁, 等. 时变温度下油纸绝缘频域介电谱曲线校正方法研究[J]. 电工技术学报, 2023, 38(1): 246-257.
Yao Huanmin, Mu Haibao, Zhang Daning, et al.Study on the frequency domain spectroscopy curves correction method of oil-paper insulation at time-varying temperature[J]. Transactions of China Electro-technical Society, 2023, 38(1): 246-257.
[3] 吴明, 张大宁, 邵先军, 等. 基于微带环谐振器的油纸绝缘介电响应特性与受潮评估[J]. 电工技术学报, 2023, 38(3): 633-647.
Wu Ming, Zhang Daning, Shao Xianjun, et al.Dielectric response properties and moisture assessment of oil-paper insulation based on micro-strip ring resonator[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 633-647.
[4] 吴治诚, 周俊杰, 张乔根, 等. 油纸绝缘水分迁移特性研究综述[J]. 高电压技术, 2023, 49(2): 781-792.
Wu Zhicheng, Zhou Junjie, Zhang Qiaogen, et al.Review on moisture migration characteristics of oil-paper insulation[J]. High Voltage Engineering, 2023, 49(2): 781-792.
[5] 张宁, 刘士利, 郝建, 等. 变压器油中气泡杂质相局部放电特性研究综述[J]. 电工技术学报, 2023, 38(10): 2757-2776.
Zhang Ning, Liu Shili, Hao Jian, et al.Review on partial discharge characteristics of bubble impurity phase in transformer oil[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2757-2776.
[6] 李云鹏, 王靖瑞, 李庆民, 等. 不同含水率下电-热耦合应力对油纸绝缘界面小分子气体扩散特性的影响机制[J]. 高压电器, 2023, 59(8): 12-21.
Li Yunpeng, Wang Jingrui, Li Qingmin, et al.Influence mechanism of electro-thermal coupling stress on diffusion characteristics of small molecule gas of oil paper insulating interface under different water content[J]. High Voltage Apparatus, 2023, 59(8): 12-21.
[7] Oommen T V.Moisture equilibrium in paper-oil insulation systems[C]//1983 EIC 6th Electrical/ Electronical Insulation Conference, Chicago, IL, USA, 1983: 162-166.
[8] CIGRE WG A2.30. Moisture equilibrium and moisture migration within transformer insulation systems[R]. Paris: CIGRE, 2008.
[9] Koch M, Tenbohlen S.Evolution of bubbles in oil-paper insulation influenced by material quality and ageing[J]. IET Electric Power Applications, 2011, 5(1): 168.
[10] Przybylek P.The influence of cellulose insulation aging degree on its water sorption properties and bubble evolution[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 906-912.
[11] Foss S D, Savio L.Mathematical and experimental analysis of the field drying of power transformer insulation[J]. IEEE Transactions on Power Delivery, 1993, 8(4): 1820-1828.
[12] de Boer J H. The Dynamical Character of Adsorption[M]. Oxford: Oxford University Press, 1953.
[13] Mejlbro L.The complete solution of Fick's Second Law of diffusion with time-dependent diffusion coefficient and surface concentration[M]//Sandberg P. Durability of Concrete in Saline Environment. Lund: Cementa AB, 1996.
[14] CIGRE WG TF D1.01.10. Ageing of cellulose in mineral-oil insulated transformers[R]. Paris: CIGRE, 2007.
[15] 王伟, 董文妍, 李芳义, 等. 升温过程中水在矿物油和纤维素界面扩散和聚集行为的分子模拟[J]. 电工技术学报, 2019, 34(17): 3696-3704.
Wang Wei, Dong Wenyan, Li Fangyi, et al.Molecular simulation of the diffusion and aggregation of water at the interface between mineral oil and cellulose during temperature rising[J]. Transactions of China Electro-technical Society, 2019, 34(17): 3696-3704.
[16] Mazeau K, Heux L.Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. The Journal of Physical Chemistry B, 2003, 107(10): 2394-2403.
[17] Singh A, Montgomery D, Xue Xingran, et al.GAG Builder: a web-tool for modeling 3D structures of glycosaminoglycans[J]. Glycobiology, 2019, 29(7): 515-518.
[18] Martínez L, Andrade R, Birgin E G, et al.PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164.
[19] 刘枫林, 徐魏. 石蜡基和环烷基变压器油的性能比较[J]. 变压器, 2004, 41(7): 27-30.
Liu Fenglin, Xu Wei.Characteristic comparison between paraffine-base and naphthene-base transformer oils[J]. Transformer, 2004, 41(7): 27-30.
[20] Bannwarth C, Caldeweyher E, Ehlert S, et al.Extended tight-binding quantum chemistry methods[J]. WIREs Computational Molecular Science, 2021, 11(2): e1493.
[21] International Electrotechnical Commission.Power transformer-part 14: liquid-immersed power transformers using high-temperature insulation materials: IEC 60076-14:2013[S]. IEC, 2013.
[22] Ryzhenko V, Sokolov V.Effect of Moisture on the dielectric strength of winding insulation in power transformers[J]. Electrical Stations, 1981.
[23] Sousa da Silva A W, Vranken W F. ACPYPE - AnteChamber PYthon parser interface[J]. BMC Research Notes, 2012, 5(1): 367.
[24] Hess B.P-LINCS: a parallel linear constraint solver for molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(1): 116-122.
[25] Essmann U, Perera L, Berkowitz M L, et al.A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593.
[26] Bussi G, Donadio D, Parrinello M.Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1): 014101.
[27] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.
[28] Mitternacht S.FreeSASA: an open source C library for solvent accessible surface area calculations[J]. F1000Research, 2016, 5: 189.
[29] 唐超, 张松, 张福州, 等. 变压器绝缘纸纤维素耐热老化性能提升的模拟及试验[J]. 电工技术学报, 2016, 31(10): 68-76.
Tang Chao, Zhang Song, Zhang Fuzhou, et al.Simulation and experimental about the thermal aging performance improvement of cellulose insulation paper[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 68-76.
[30] 刘君, 吴广宁, 周利军, 等. 油纸绝缘体系微水扩散的分子模拟[J]. 高电压技术, 2010, 36(12): 2907-2912.
Liu Jun, Wu Guangning, Zhou Lijun, et al.Moisture diffusion in oil-paper insulation using molecular simulation[J]. High Voltage Engineering, 2010, 36(12): 2907-2912.
[31] 王伟, 董文妍, 李芳义, 等. 升温过程中水分子在油纸界面处的迁移和聚集行为的分子模拟[J]. 高电压技术, 2019, 45(11): 3539-3546.
Wang Wei, Dong Wenyan, Li Fangyi, et al.Molecular simulation of migration and aggregation behavior of water molecules at interface of mineral oil and cellulose during rapid temperature rising[J]. High Voltage Engineering, 2019, 45(11): 3539-3546.
[32] Sikorski W, Walczak K, Przybylek P.Moisture migration in an oil-paper insulation system in relation to online partial discharge monitoring of power transformers[J]. Energies, 2016, 9(12): 1082.
[33] Jiang J P, Du B X, Cavallini A.Effect of moisture migration on surface discharge on oil-pressboard of power transformers under cooling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(5): 1743-1751.