Abstract:Based on the instantaneous reactive power theory, a new power direction protection principle is proposed. The power direction element consists of incremental power element and negative sequence power element, the former calculates the reactive power of two sides homotactic passive system of the protected line for symmetric fault, and the latter calculates that for asymmetric fault, and then the principle can distinguish between internal and external faults by the sign of the reactive power of two sides system. The principle based on the remarkable character of the system inductive impedance has clear physical meaning, and has the merits of the power frequency fault component protection principle, furthermore, the special power frequency filter is needless. And the protection speed of the relay is faster than the conventional directional protection based on power frequency fault component. Its reliability is higher than the traveling-wave-based protection, and it has high sensitivity too. The sensitivity and reliability and rapidity of the algorithm can be achieved by theory analysis and simulation experiment.
古斌, 谭建成. 基于瞬时功率理论的新型功率方向元件[J]. 电工技术学报, 2010, 25(2): 177-182.
Gu Bin, Tan Jiancheng. A Study of the Novel Power Direction Relay Based on the Instantaneous Power Theory. Transactions of China Electrotechnical Society, 2010, 25(2): 177-182.
[1] 贺家李, 李永丽, 李斌, 等. 特高压输电线继电保护配置方案(二)——保护配置方案[J]. 电力系统自动化, 2002, 26(24): 1-6. [2] 戴学安. 继电保护原理的重大突破——综论工频变化量继电器[J]. 电力系统自动化, 1995, 19(1): 41- 47. [3] 袁荣湘, 陈德树, 张哲. 高压线路方向保护新原理的研究[J]. 中国电机工程学报, 2000, 20(3): 20-25. [4] 何奔腾, 金华烽, 李菊. 能量方向保护的实现和试验[J]. 中国电机工程学报, 1997, 17(3): 171-174. [5] 何奔腾, 金华烽, 李菊. 能量方向保护原理和特性研究 [J]. 中国电机工程学报, 1997, 17(3): 166-170. [6] 文明浩, 陈德树, 尹项根. 远距离输电线路的能量平衡保护[J]. 中国电机工程学报, 2001, 21(2): 74-79. [7] Darwish H A, Taalab A M, Ahmed E S. Investigation of power differential concept for line protection[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 617-624. [8] Namdari F, Jamali S, Peter A C. Differential protection of busbars and transmission lines based on the energy conservation law for wide area protection[J]. Automation of Electric Power Systems, 2007, 31(3): 35-40. [9] Akagi H, Kanazawa Y, Nobase A. Generalized theory of the instantaneous reactive power in three-phase circuits[C]. Proceedings of International Conference on Power Electronics, Tokyo, Japan, 1983. [10] Akagi H, Kanazawa Y, Nobase A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications, 1984, 20(3): 625-630. [11] 刘进军, 王兆安. 瞬时无功功率与传统功率理论的统一数学描述及物理意义[J]. 电工技术学报, 1998, 13(6): 6-12. [12] Willems J L. A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations[J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(4): 523-527. [13] Aller J M, Bueno A, Restrepo J A. Advantages of the instantaneous reactive power definitions in three phase system measurement[J]. IEEE Power Engineering Review, 1999, 19(6): 54-56. [14] Bo Z Q. Adaptive non-communication protection for power lines, BO scheme 3—The accelerated operation approach[J]. IEEE Transactions on Power Delivery, 2002, 17(1): 97-104. [15] 毛鹏, 杨立, 杜肖功. 基于零序分量的距离继电 器[J]. 电力系统自动化, 2003, 27(10): 60-65.