Abstract:Hybrid multi-terminal DC transmission technology combines the advantages of the two converter technologies and has broad development prospects. The fault characteristics of the transmission line of the multi-terminal hybrid system are different from the traditional single DC system. The fault characteristics of the hybrid multi-terminal DC transmission line are analyzed in this paper. it is found that there are current imbalances on both sides when the transmission line faults, and the backup protection time requirements of the LCC branch and the VSC branch are different. The traditional differential undervoltage protection and current differential protection is difficult to serve as backup protection for the entire transmission line. In order to solve the problem, a dual-acceleration inverse time overcurrent protection scheme based on single-end electrical quantities is proposed as a fast backup protection for the transmission line traveling wave protection. The scheme of different setting values at both ends to solve the problem of current imbalance on both sides was used in this paper. The inverse time limit feature can be used to cooperate with the main protection of two branches at the same time. Therefore, the protection scheme is less affected by distributed capacitance and transition resistance. Finally, simulation results prove the effectiveness of the scheme.
[1] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [2] 戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网故障分析[J]. 电工技术学报, 2018, 33(8): 1863-1874. Dai Zhihui, Ge Hongbo, Yan Siqi, et al.Fault analysis of flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1863-1874. [3] 王聪博, 贾科, 赵其娟, 等. 基于故障全电流相关性检验的柔性直流配电线路纵联保护[J]. 电工技术学报, 2020, 35(8): 1764-1775. Wang Congbo, Jia Ke, Zhao Qijuan, et al.Pilot protection for flexible-DC distribution line based on correlation test of DC current[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1764-1775. [4] 范志华, 苗世洪, 刘子文, 等. 模块化多电平换流器子模块故障特性分析与解耦控制策略[J]. 电工技术学报, 2018, 33(16): 3707-3718. Fan Zhihua, Miao Shihong, Liu Ziwen, et al.Modular multilevel converter sub-module fault characteristics analysis and decoupling control strategy[J]. Transa-ctions of China Electrotechnical Society, 2018, 33(16): 3707-3718. [5] 丁海龙, 袁志昌, 吴爱军, 等. 混合双馈入直流系统最大传输功率控制测量研究[J]. 电工技术学报, 2020, 35(2): 330-336. Ding Hailong, Yuan Zhichang, Wu Aijun, et al.Research on control strategy for maximum power transmission in doubly-fed hybrid DC system[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 330-336. [6] Haleem N M, Rajapakse A D, Gole A M, et al.Investigation of fault ride-through capability of hybrid VSC-LCC multi-terminal HVDC transmission systems[J]. IEEE Transactions on Power Delivery, 2019, 34(1): 241-250. [7] Rao Hong, Zhou Yuebin, Xu Shukai, et al.Key technologies of ultra-high voltage hybrid LCC-VSC MTDC systems[J]. CSEE Journal of Power and Energy Systems, 2019, 5(3): 365-373. [8] Xu Dizhen, Zhao Xiaobin, Lu Yuxin, et al.Study on overvoltage of hybrid LCC-VSC-HVDC transmission[J]. The Journal of Engineering, 2019, 16(3): 1906-1910. [9] Li Gen, Liang Jun, Joseph T, et al.Feasibility and reliability analysis of LCC DC grids and LCC/VSC hybrid DC grids[J]. IEEE Access, 2019, 7(1): 22445-22456. [10] Wang Yanting, Zhang Baohui.A novel hybrid directional comparison pilot protection scheme for the LCC-VSC hybrid HVDC transmission lines[C]//13th International Conference on Development in Power System Protection 2016 (DPSP), Edinburgh, 2016: 1-6. [11] 张坤. 多端混合直流线路故障特性与保护原理研究[D]. 广州: 华南理工大学, 2019. [12] 曹润彬, 李岩, 许树楷, 等. 特高压混合多端直流线路保护配置与配合研究[J]. 南方电网技术, 2018, 12(11): 52-58. Cao Runbin, Li Yan, Xu Shukai, et al.Research on configuration and coordination of multi-terminal hybrid UHVDC line protection[J]. Southern Power System Technology, 2018, 12(11): 52-58. [13] 邱宏. 混合多端直流系统故障特征与保护原理研究[D]. 天津: 天津大学, 2018. [14] 朱航舰. 混合双极直流输电线路继电保护方法研究[D]. 西安: 西安科技大学, 2019. [15] 陈争光, 周泽昕, 王兴国, 等. 混合多端直流输电系统线路保护方案研究[J]. 电网技术, 2019, 43(7): 2617-2622. Cheng Zhengguang, Zhou Zexin, Wang Xingguo, et al.Research on line protection scheme of hybrid multi-terminal DC transmission lines[J]. Power System Technology, 2019, 43(7): 2617-2622. [16] Kerf K D, Srivastava K, Reza M, et al.Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems[J]. IET Generation, Transmission & Distribution, 2011, 5(4): 496-503. [17] 洪潮, 郭彦勋, 李海锋, 等. 直流电网快速后备保护方案[J]. 高电压技术, 2018, 44(10): 3375-3382. Hong Chao, Guo Yanxun, Li Haifeng, et al.Fast operating backup protection scheme of DC grid[J]. High Voltage Technology, 2018, 44(10): 3375-3382. [18] 郝亮亮, 詹清清, 陈争光, 等. LCC-MMC型混合直流送端交流系统故障时直流电流的暂态过程解析[J]. 电力自动化设备, 2019, 39(9): 220-227. Hao Liangliang, Zhang Qingqing, Chen Zhengguang, et al.Analysis of DC current transient process under AC system fault at LCC-MCC Hybrid HVDC sending end[J]. Electric Power Automation Equipment, 2019, 39(9): 220-227. [19] 高仁栋, 吴在军, 范文超, 等. 双端直流配电网反时限电流方差保护方案[J]. 电网技术, 2018, 42(9): 2849-2859. Gao Rendong, Wu Zaijun, Fan Wenchao, et al.Inverse time current variance protection scheme for two-terminal DC distribution system[J]. Power System Technology, 2018, 42(9): 2849-2859. [20] 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749. Li Bin, He Jiawei, Li Wei, et al.Single-ended quantity protection scheme baes on boundary characteristic 21 for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 22 5741-5749. [21] 贾科, 赵其娟, 冯涛, 等. 柔性直流配电系统高频突变量距离保护[J]. 电工技术学报, 2020, 35(2): 383-394. Jia Ke, Zhao Qijun, Song Tao, et al.High-frequency fault component distance protection for flexible DC distribution system[J]. Transactions of China Elec-trotechnical Society, 2020, 35(2): 383-394.