Abstract:In finite control set-model predictive flux control (FCS-MPFC) for permanent magnet synchronous machine (PMSM), the parameters are required for flux linkage reference calculation, actual flux estimation, and flux prediction in the following one or two sampling periods. Due to the influence of operation states and temperature, machine parameters are ready to deviate. Therefore, identifying their values online is crucial to the performance of the actual predictive control system, including the d- and q-axis inductances and the permanent magnet flux. This paper proposes a multi-parameter identification scheme for PMSM. Consequently, with the identified parameters, the flux is treated, and an FCS-MPFC scheme is implemented. Firstly, this paper designs a generalized proportional integral observer (GPIO) to observe the disturbance caused by parameter deviations. The motor parameter deviations in the disturbance can be extracted based on the mathematical model of the motor. Then, the q-axis inductance and permanent magnet flux can be accurately identified by compensating the nominal parameters. Next, a d-axis inductance identification method is proposed based on the stator current variation characteristics under the FCS-MPFC strategy, which constructs an identification equation for the d-axis inductance using the d-axis current difference equation. It improves identification accuracy by setting appropriate boundary conditions for the differential current values, overcoming the rank deficiency problem in multi-parameter identification. In addition, boundary conditions are set for current and speed to ensure the identification effectiveness. The low-pass filters eliminate high harmonic noises in the identified motor parameters. Furthermore, the identification process is improved by leveraging the characteristics of inverter voltage output under the FCS-MPFC strategy. Specifically, two current samples are taken within a control cycle. By appropriately setting the sampling moments, the dead zone voltage is eliminated from the identification equation. Finally, for the flux prediction process, a flux prediction model based on GPIO is designed to enhance the robustness of flux prediction parameters. A test platform for PMSM is constructed. Multi-parameter identification, electromagnetic torque increment experiment, and motor acceleration-deceleration experiment are conducted separately. The experimental results demonstrate that the proposed approach can address the rank deficiency issue in multi-parameter identification and eliminate the influence of the inverter dead zone on parameter identification and predictive control. The d-axis inductance, q-axis inductance, and permanent magnet flux under different operating conditions can be identified accurately. Compared to the traditional predictive flux control using nominal parameters, this method eliminates the impact of parameter deviations on torque control. It enables accurate torque control even in the presence of parameter deviations. Furthermore, it outperforms the traditional approach regarding torque control performance under various operating conditions.
[1] Rodriguez J, Kazmierkowski M P, Espinoza J R, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1003-1016. [2] Lee J H.Model predictive control: review of the three decades of development[J]. International Journal of Control, Automation and Systems, 2011, 9(3): 415-424. [3] 张永昌, 杨海涛. 感应电机模型预测磁链控制[J]. 中国电机工程学报, 2015, 35(3): 719-726. Zhang Yongchang, Yang Haitao.Model predictive flux control for induction motor drives[J]. Pro- ceedings of the CSEE, 2015, 35(3): 719-726. [4] 牛峰, 韩振铎, 黄晓艳, 等. 永磁同步电机模型预测磁链控制[J]. 电机与控制学报, 2019, 23(3): 34-41. Niu Feng, Han Zhenduo, Huang Xiaoyan, et al.Model predictive flux control for permanent magnet synchronous motor[J]. Electric Machines and Control, 2019, 23(3): 34-41. [5] Yan Liming, Wang Fengxiang.Observer-predictor- based predictive torque control of induction machine for robustness improvement[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9477-9486. [6] Wang Huimin, Li Chongyuan, Zhang Guozheng, et al.Maximum torque per ampere (MTPA) control of IPMSM systems based on controller parameters self-modification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2613-2620. [7] Xia Jinhui, Guo Yuanbo, Li Ze, et al.Step-signal- injection-based robust MTPA operation strategy for interior permanent magnet synchronous machines[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2052-2061. [8] Liu Guohai, Wang Jian, Zhao Wenxiang, et al.A novel MTPA control strategy for IPMSM drives by space vector signal injection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9243-9252. [9] Feng Guodong, Lai Chunyan, Han Yu, et al.Fast maximum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curve fitting[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2045-2056. [10] 葛扬, 宋卫章, 杨洋. 基于扩张式主从自适应陷波滤波器与动态频率跟踪的永磁同步电机无传感器控制[J]. 电工技术学报, 2023, 38(14): 3824-3835. Ge Yang, Song Weizhang, Yang Yang.PMSM sensorless control based on extended master-slave adaptive notch filter and dynamic frequency tracking[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3824-3835. [11] 陈卓易, 邱建琪, 金孟加. 永磁同步电机有限集无参数模型预测控制[J]. 电机与控制学报, 2019, 23(1): 19-26. Chen Zhuoyi, Qiu Jianqi, Jin Mengjia.Finite control set nonparametric model predictive control for permanent magnet synchronous machines[J]. Electric Machines and Control, 2019, 23(1): 19-26. [12] 魏尧, 柯栋梁, 黄东晓, 等. 基于超局部化时间序列的永磁同步电机无模型预测电流滑模控制策略[J]. 电工技术学报, 2024, 39(4): 1022-1032. Wei Yao, Ke Dongliang, Huang Dongxiao, et al.Model-free predictive sliding mode control using ultra-localized time-series for permanent magnet synchronous motor drives[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1022-1032. [13] 姚欢, 史婷娜, 王志强, 等. 级联H桥逆变器驱动永磁同步电机的鲁棒预测电流控制策略[J]. 中国电机工程学报, 2022, 42(14): 5266-5278. Yao Huan, Shi Tingna, Wang Zhiqiang, et al.Robust predictive current control for PMSM fed by CHB inverter[J]. Proceedings of the CSEE, 2022, 42(14): 5266-5278. [14] 杨帆, 赵希梅, 金鸿雁, 等. 基于GPI观测器的永磁同步电机鲁棒谐振预测电流控制[J]. 电工技术学报, 2024, 39(10): 2995-3006. Yang Fan, Zhao Ximei, Jin Hongyan, et al.Robust resonant predictive current control based on GPI observer for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2995-3006. [15] Wang Xing, Zhang Yongchang, Yang Haitao, et al.A model-free predictive current control of induction motor based on current difference[C]//2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 2020: 1038-1042. [16] Li Ze, Feng Guodong, Lai Chunyan, et al.Current injection-based multi-parameter estimation for dual three-phase IPMSM considering VSI nonlinearity[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 405-415. [17] 姚绪梁, 黄乘齐, 王景芳, 等. 具有参数辨识功能的永磁同步电机双矢量模型预测电流控制[J]. 中国电机工程学报, 2023, 43(23): 9319-9330. Yao Xuliang, Huang Shengqi, Wang Jingfang, et al.A two-vector-based model predictive current control with online parameter identification for PMSM drives[J]. Proceedings of the CSEE, 2023, 43(23): 9319-9330. [18] Li Xinyue, Kennel R.General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2856-2864. [19] 李婕, 杨淑英, 谢震, 等. 基于有效信息迭代快速粒子群优化算法的永磁同步电机参数在线辨识[J]. 电工技术学报, 2022, 37(18): 4604-4613. Li Jie, Yang Shuying, Xie Zhen, et al.Online parameter identification of permanent magnet synchronous motor based on fast particle swarm optimization algorithm with effective information iterated[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4604-4613. [20] 吴春, 赵宇纬, 孙明轩. 采用测量电压的永磁同步电机多参数在线辨识[J]. 中国电机工程学报, 2020, 40(13): 4329-4340. Wu Chun, Zhao Yuwei, Sun Mingxuan.Multi- parameter online identification for permanent magnet synchronous machines using voltage measurements[J]. Proceedings of the CSEE, 2020, 40(13): 4329-4340. [21] 马铱林, 袁浩, 尹威, 等. 考虑等效电磁损耗电阻偏移的永磁同步电机直流信号注入在线参数辨识方法[J]. 电工技术学报, 2023, 38(22): 6015-6026. Ma Yilin, Yuan Hao, Yin Wei, et al.DC-signal- injection-based online parameters identification for permanent magnet synchronous machine considering variation of equivalent electromagnetic loss resistance[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 6015-6026. [22] 陈国真, 黄旭东, 蒋炯炜. 基于死区效应时间补偿的永磁同步电机矢量控制[J]. 微特电机, 2022, 50(4): 52-56. Chen Guozhen, Huang Xudong, Jiang Jiongwei.Permanent magnet synchronous motor vector control based on dead-time effects time compensation method[J]. Small & Special Electrical Machines, 2022, 50(4): 52-56. [23] Herran M A, Fischer J R, Gonzalez S A, et al.Adaptive dead-time compensation for grid-connected PWM inverters of single-stage PV systems[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2816-2825. [24] Yu Kailiang, Wang Zheng.Improved deadbeat predictive current control of dual three-phase variable-flux PMSM drives with composite dis- turbance observer[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8310-8321. [25] 刘小俊. 基于自适应陷波器的永磁牵引电机死区补偿方法研究[J]. 电机与控制应用, 2019, 46(8): 24-30. Liu Xiaojun.Method of dead time compensation for permanent magnet traction motor based on adaptive Notch filter[J]. Electric Machines & Control Appli- cation, 2019, 46(8): 24-30. [26] Qiu Tengfei, Wen Xuhui, Zhao Feng.Adaptive- linear-neuron-based dead-time effects compensation scheme for PMSM drives[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2530-2538. [27] Joksimovic M G, Levi E, Vukosavic S N.Near- complete suppression of harmonic currents in SPMSMs caused by back EMF and dead time[J]. IEEE Transactions on Industrial Electronics, 2023, 70(5): 4472-4484. [28] Chen Wenhua, Yang Jun, Guo Lei, et al.Disturbance- observer-based control and related methods-an overview[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(2): 1083-1095. [29] 杨淑英, 王奇帅, 东野亚兰, 等. 永磁同步电机离散化建模与分析[J]. 电气传动, 2021, 51(5): 15-24. Yang Shuying, Wang Qishuai, Dongye Yalan, et al.Discrete-time modeling and analysis of permanent magnet synchronous motor[J]. Electric Drive, 2021, 51(5): 15-24. [30] Bae B H, Sul S K.A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 802-810.