Limited by the number of voltage vectors, there are large current ripples in the finite control set predictive control with vector duration optimization, and the accuracy of current prediction is highly dependent on precise motor parameters. However, these motor parameters may not match with their actual values because of magnetic saturation, and parameter errors during operation reduce current control accuracy. Therefore, an improved predictive current control strategy based on the optimal virtual voltage vector is proposed to improve current control performance. Voltage control set is extended to the hexagonal region by virtual voltage vectors, which are composed of basic voltage vectors. To reduce prediction calculations, the sector of the optimal virtual vector is determined by the deadbeat control principle and the basic voltage vectors of the sector are selected for calculating the virtual voltage vector. Then, a current cost function with feedback correction of prediction errors is designed. The durations of basic vectors are calculated based on the cost function, and the optimal virtual vector is established to improve current control accuracy. The proposed method significantly reduces current ripples and calculations, and also improves parameter robustness. Simulations and experiments were carried out on a permanent magnet synchronous motor drive system with a two-level inverter. The results verify the effectiveness of the proposed method.
康劲松, 李旭东, 王硕. 计及参数误差的永磁同步电机最优虚拟矢量预测电流控制[J]. 电工技术学报, 2018, 33(24): 5731-5740.
Kang Jinsong, Li Xudong, Wang Shuo. Optimal Virtual Vector Predictive Current Control for Permanent Magnet Synchronous Motor Considering Parameter Errors. Transactions of China Electrotechnical Society, 2018, 33(24): 5731-5740.
[1] Siami M, Khaburi D A, Abbaszadeh A, et al.Robustness improvement of predictive current control using prediction error correction for permanent- magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3458-3466.
[2] 王高林, 徐进, 张国强, 等. 直驱式永磁曳引系统无称重传感器起动控制策略[J]. 中国电机工程学报, 2015, 35(16): 4207-4214.Wang Gaolin, Xu Jin, Zhang Guoqiang, et al. Weight-transducerless starting torque control strategy of direct-drive permanent magnet traction system[J]. Proceedings of the CSEE, 2015, 35(16): 4207-4214.
[3] Wang B, Chen X, Yu Y, et al.Robust predictive current control with online disturbance estimation for induction machine drives[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4633-4674.
[4] 张虎, 张永昌, 夏波, 等. 基于空间矢量调制的感应电机无速度传感器模型预测磁链控制[J]. 电工技术学报, 2017, 32(3): 97-104.Zhang Hu, Zhang Yongchang, Xia Bo, et al. Speed Sensorless model predictive flux control of induction motor drives based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 97-104.
[5] Vafaie M H, Dehkordi B M, Moallem P, et al.A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM[J]. IEEE Transactions on Power Electronics, 2015, 31(5): 3738-3753.
[6] 康劲松, 崔宇航, 王硕. 基于电流快速响应的永磁同步电机六拍运行控制策略[J]. 电工技术学报, 2016, 31(1): 165-174.Kang Jinsong, Cui Yuhang, Wang Shuo. The current rapid response control strategy for the six-step operation of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 165-174.
[7] Ma Z, Saeidi S, Kennel R.FPGA implementation of model predictive control with constant switching frequency for PMSM drives[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2055-2063.
[8] Wang Yuanlin, Wang Xiaocan, Xie Wei, et al.Deadbeat model predictive torque control with discrete space vector modulation for PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3537-3547.
[9] Zhang Yongchang, Xu Donglin, Liu Jiali, et al.Performance improvement of model predictive current control of permanent magnet synchronous motor drives[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3683-3695.
[10] 徐艳平, 王极兵, 张保程, 等. 永磁同步电机三矢量模型预测电流控制[J]. 电工技术学报, 2018, 33(5): 980-988.Xu Yanping, Wang Jibing, Zhang Baocheng, et al. Three-vector-based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 980-988.
[11] Zhou Zhanqing, Xia Changliang, Yan Yan, et al.Torque ripple minimization of predictive torque control for PMSM with extended control set[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 6930-6939.
[12] 张永昌, 杨海涛, 魏香龙. 基于快速矢量选择的永磁同步电机模型预测控制[J]. 电工技术学报, 2016, 31(6): 66-73.Zhang Yongchang, Yang Haitao, Wei Xianglong. Model predictive control of permanent magnet synchronous motors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73.
[13] Wang Gaolin, Qu Lizhi, Zhan Hanlin, et al.Self- commissioning of permanent magnet synchronous machine drives at standstill considering inverter nonlinearities[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6615-6627.
[14] 王高林, 李卓敏, 詹瀚林, 等. 考虑逆变器非线性的内置式永磁同步电机转子位置锁相环观测器[J]. 电工技术学报, 2014, 29(3): 172-179.Wang Gaolin, Li Zhuomin, Zhan Hanlin, et al. Phase-locked-loop rotor position observer for IPMSM considering inverter nonlinearity[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 172-179.
[15] 周湛清, 夏长亮, 陈炜, 等. 具有参数鲁棒性的永磁同步电机改进型预测转矩控制[J]. 电工技术学报, 2018, 33(5): 965-972.Zhou Zhanqing, Xia Changliang, Chen Wei, et al. Modified predictive torque control for PMSM drives with parameter robustness[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 965-972.
[16] Siami M, Khaburi D A, Rodriguez J.Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch[J]. IEEE Transa- ctions on Power Electronics, 2017, 32(9): 7160-7168.
[17] 易伯瑜, 康龙云, 冯自成, 等. 基于扰动观测器的永磁同步电机预测电流控制[J]. 电工技术学报, 2016, 31(18): 37-45.Yi Boyu, Kang Longyun, Feng Zicheng, et al. Predictive current control for permanent magnet synchronous motor based on disturbance observer[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 37-45.
[18] Wang Bo, Dong Zhen, Yu Yong, et al.Static- errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2395-2403.
[19] Zhang Xiaoguang, Hou Benshuai, Mei Yang.Deadbeat predictive current control of permanent- magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3818-3834.
[20] 张国强, 王高林, 徐殿国, 等. 基于单观测器误差信息融合的永磁电机无传感器复合控制策略[J]. 中国电机工程学报, 2017, 37(20): 6077-6082.Zhang Guoqiang, Wang Gaolin, Xu Dianguo, et al. Hybrid sensorless control based on single position observer using error combination for interior permanent magnet synchronous machine drives[J]. Proceedings of the CSEE, 2017, 37(20): 6077-6082.
[21] Yang Ming, Lang Xiaoyu, Long Jiang, et al.Flux immunity robust predictive current control with incremental model and extended state observer for PMSM drive[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9267-9279.
[22] 史婷娜, 张维, 肖萌, 等. 基于矢量作用时间的永磁同步电机预测电流控制[J]. 电工技术学报, 2017, 32(19): 1-10.Shi Tingna, Zhang Wei, Xiao Meng, et al. Predictive current control for permanent magnet synchronous motor based on operating time of vector[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(19): 1-10.
[23] 李旭东, 王硕, 康劲松. 计及磁饱和的车用永磁同步电机MTPA控制技术[J]. 电源学报, 2017, 15(2): 94-100.Li Xudong, Wang Shuo, Kang Jinsong. MTPA control technology of permanent magnet synchronous motor used in electric vehicle considering magnetic saturation[J]. Journal of Power Supply, 2017, 15(2): 94-100.
[24] 符荣, 窦满峰. 电动汽车驱动用内置式永磁同步电机直交轴电感参数计算与实验研究[J]. 电工技术学报, 2014, 29(11): 30-37.Fu Rong, Dou Manfeng. D-axis and Q-axis inductance calculation and experimental research on interior permanent magnet synchronous motors for EV[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 30-37.
[25] 张虎, 张永昌, 刘家利, 等. 基于单次电流采样的永磁同步电机无模型预测电流控制[J]. 电工技术学报, 2017, 32(2): 180-187.Zhang Hu, Zhang Yongchang, Liu Jiali, et al. Model-free predictive current control of permanent magnet synchronous motor based on single current sampling[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 180-187.