[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
Zhang Zhigang, Kang Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下 “能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
Xin Baoan, Shan Baoguo, Li Qionghui, et al.Rethinking of the \ “three elements of energy\” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[3] Boicea V A.Energy storage technologies: the past and the present[J]. Proceedings of the IEEE, 2014, 102(11): 1777-1794.
[4] 王珂, 姚建国, 姚良忠, 等. 电力柔性负荷调度研究综述[J]. 电力系统自动化, 2014, 38(20): 127-135.
Wang Ke, Yao Jianguo, Yao Liangzhong, et al.Survey of research on flexible loads scheduling technologies[J]. Automation of Electric Power Systems, 2014, 38(20): 127-135.
[5] Gill S, Kockar I, Ault G W.Dynamic optimal power flow for active distribution networks[J]. IEEE Transactions on Power Systems, 2014, 29(1): 121-131.
[6] 尤毅, 刘东, 钟清, 等. 主动配电网优化调度策略研究[J]. 电力系统自动化, 2014, 38(9): 177-183.
You Yi, Liu Dong, Zhong Qing, et al.Research on optimal schedule strategy for active distribution network[J]. Automation of Electric Power Systems, 2014, 38(9): 177-183.
[7] Chen Xiaoshuang, Lin Jin, Liu Feng, et al.Optimal control of DERs in ADN under spatial and temporal correlated uncertainties[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1216-1228.
[8] 金国彬, 潘狄, 陈庆, 等. 考虑源荷不确定性的直流配电网模糊随机日前优化调度[J]. 电工技术学报, 2021, 36(21): 4517-4528.
Jin Guobin, Pan Di, Chen Qing, et al.Fuzzy random day-ahead optimal dispatch of DC distribution network considering the uncertainty of source-load[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4517-4528.
[9] 徐崇博, 杨晓东, 张有兵, 等. 考虑风险管控的含智能软开关主动配电网随机运行优化方法[J]. 电力系统自动化, 2021, 45(11): 68-76.
Xu Chongbo, Yang Xiaodong, Zhang Youbing, et al.Stochastic operation optimization method for active distribution networks with soft open point considering risk management and control[J]. Automation of Electric Power Systems, 2021, 45(11): 68-76.
[10] 李鹏, 王加浩, 黎灿兵, 等. 计及源荷不确定性与设备变工况特性的园区综合能源系统协同优化运行方法[J]. 中国电机工程学报, 2023, 43(20): 7802-7812.
Li Peng, Wang Jiahao, Li Canbing, et al.Collaborative optimal scheduling of the community integrated energy system considering source-load uncertainty and equipment off-design performance[J]. Proceedings of the CSEE, 2023, 43(20): 7802-7812.
[11] 梁俊文, 林舜江, 刘明波, 等. 主动配电网分布式鲁棒优化调度方法[J]. 电网技术, 2019, 43(4): 1336-1344.
Liang Junwen, Lin Shunjiang, Liu Mingbo, et al.Distributed robust optimal dispatch in active distribution networks[J]. Power System Technology, 2019, 43(4): 1336-1344.
[12] 李鹏, 姜磊, 王加浩, 等. 基于深度强化学习的新能源配电网双时间尺度无功电压优化[J]. 中国电机工程学报, 2023, 43(16): 6255-6266.
Li Peng, Jiang Lei, Wang Jiahao, et al.Optimization of dual-time scale reactive voltage for distribution network with renewable energy based on deep reinforcement learning[J]. Proceedings of the CSEE, 2023, 43(16): 6255-6266.
[13] Li Yunyi, Wan Can, Chen Dawei, et al.Nonparametric probabilistic optimal power flow[J]. IEEE Transactions on Power Systems, 2022, 37(4): 2758-2770.
[14] 王骞, 张学广, 徐殿国. 考虑内-外生双重不确定性的风储系统联合规划方法[J]. 中国电机工程学报, 2023, 43(1): 169-181.
Wang Qian, Zhang Xueguang, Xu Dianguo.A joint planning method of wind-storage system considering endogenous and exogenous uncertainty[J]. Proceedings of the CSEE, 2023, 43(1): 169-181.
[15] Lopez-Ramos L M, Kekatos V, Marques A G, et al. Two-timescale stochastic dispatch of smart distribution grids[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4282-4292.
[16] Li Peng, Wang Zixuan, Wang Jiahao, et al.A multi-time-space scale optimal operation strategy for a distributed integrated energy system[J]. Applied Energy, 2021, 289: 116698.
[17] 陈明昊, 孙毅, 谢志远. 基于双层深度强化学习的园区综合能源系统多时间尺度优化管理[J]. 电工技术学报, 2023, 38(7): 1864-1881.
Chen Minghao, Sun Yi, Xie Zhiyuan.The multi-time-scale management optimization method for park integrated energy system based on the Bi-layer deep reinforcement learning[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1864-1881.
[18] 李勇, 凌锋, 乔学博, 等. 基于网侧资源协调的自储能柔性互联配电系统日前-日内优化[J]. 电工技术学报, 2024, 39(3): 758-773, 923.
Li Yong, Ling Feng, Qiao Xuebo, et al.Day-ahead and intra-day optimization of flexible interconnected distribution system with self-energy storage based on the grid-side resource coordination[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 758-773, 923.
[19] Kalantar-Neyestanaki M, Cherkaoui R.Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 1853-1863.
[20] Zhu Jianquan, Chen Jiajun, Zhuo Yelin, et al.Stochastic energy management of active distribution network based on improved approximate dynamic programming[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 406-416.
[21] Wang Kang, Wang Chengfu, Zhang Zhenwei, et al.Multi-timescale active distribution network optimal dispatching based on SMPC[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 1644-1653.
[22] Kamruzzaman M, Duan Jiajun, Shi Di, et al.A deep reinforcement learning-based multi-agent framework to enhance power system resilience using shunt resources[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5525-5536.
[23] 顾雪平, 刘彤, 李少岩, 等. 基于改进双延迟深度确定性策略梯度算法的电网有功安全校正控制[J]. 电工技术学报, 2023, 38(8): 2162-2177.
Gu Xueping, Liu Tong, Li Shaoyan, et al.Active power correction control of power grid based on improved twin delayed deep deterministic policy gradient algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2162-2177.
[24] 董雷, 杨子民, 乔骥, 等. 基于分层约束强化学习的综合能源多微网系统优化调度[J]. 电工技术学报, 2024, 39(5): 1436-1453.
Dong Lei, Yang Zimin, Qiao Ji, et al.Optimal scheduling of integrated energy multi-microgrid system based on hierarchical constraint reinforcement learning[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1436-1453.
[25] 胡维昊, 曹迪, 黄琦, 等. 深度强化学习在配电网优化运行中的应用[J]. 电力系统自动化, 2023, 47(14): 174-191.
Hu Weihao, Cao Di, Huang Qi, et al.Application of deep reinforcement learning in optimal operation of distribution network[J]. Automation of Electric Power Systems, 2023, 47(14): 174-191.
[26] 王继业. 人工智能赋能源网荷储协同互动的应用及展望[J]. 中国电机工程学报, 2022, 42(21): 7667-7682.
Wang Jiye.Application and prospect of Source-grid-load-storage coordination enabled by artificial intelligence[J]. Proceedings of the CSEE, 2022, 42(21): 7667-7682.
[27] 汤涌, 姚伟, 王宏志, 等. 电网仿真分析与决策的人工智能方法[J]. 中国电机工程学报, 2022, 42(15): 5384-5406.
Tang Yong, Yao Wei, Wang Hongzhi, et al.Artificial intelligence techniques for power grid simulation analysis and decision making[J]. Proceedings of the CSEE, 2022, 42(15): 5384-5406.
[28] 李涛, 胡维昊, 李坚, 等. 基于深度强化学习算法的光伏-抽蓄互补系统智能调度[J]. 电工技术学报, 2020, 35(13): 2757-2768.
Li Tao, Hu Weihao, Li Jian, et al.Intelligent economic dispatch for PV-PHS integrated system: a deep reinforcement learning-based approach[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2757-2768.
[29] 张剑, 崔明建, 何怡刚. 结合数据驱动与物理模型的主动配电网双时间尺度电压协调优化控制[J]. 电工技术学报, 2024, 39(5): 1327-1339.
Zhang Jian, Cui Mingjian, He Yigang.Dual timescales coordinated and optimal voltages control in distribution systems using data-driven and physical optimization[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1327-1339.
[30] 张自东, 邱才明, 张东霞, 等. 基于深度强化学习的微电网复合储能协调控制方法[J]. 电网技术, 2019, 43(6): 1914-1921.
Zhang Zidong, Qiu Caiming, Zhang Dongxia, et al.A coordinated control method for hybrid energy storage system in microgrid based on deep reinforcement learning[J]. Power System Technology, 2019, 43(6): 1914-1921.
[31] Huang Shiying, Li Peng, Yang Ming, et al.A control strategy based on deep reinforcement learning under the combined wind-solar storage system[J]. IEEE Transactions on Industry Applications, 2021, 57(6): 6547-6558.
[32] Yang Qiuling, Wang Gang, Sadeghi A, et al.Two-timescale voltage control in distribution grids using deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2313-2323.
[33] Wu Hongyu, Shahidehpour M, Alabdulwahab A, et al.Demand response exchange in the stochastic day-ahead scheduling with variable renewable generation[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 516-525.
[34] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
Liu Quan, Zhai Jianwei, Zhang Zongchang, et al.A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27.
[35] 董雷, 陈卉, 蒲天骄, 等. 基于模型预测控制的主动配电网多时间尺度动态优化调度[J]. 中国电机工程学报, 2016, 36(17): 4609-4617.
Dong Lei, Chen Hui, Pu Tianjiao, et al.Multi-time scale dynamic optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2016, 36(17): 4609-4617.
[36] 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835.
Jiang Yunpeng, Ren Zhouyang, Li Qiuyan, et al.An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835.
[37] Li Peng, Wang Zixuan, Liu Haitao, et al.Bi-level optimal configuration strategy of community integrated energy system with coordinated planning and operation[J]. Energy, 2021, 236: 121539.
[38] 朱兰, 周雪莹, 唐陇军, 等. 计及可中断负荷的微电网多目标优化运行[J]. 电网技术, 2017, 41(6): 1847-1854.
Zhu Lan, Zhou Xueying, Tang Longjun, et al.Multi-objective optimal operation for microgrid considering interruptible loads[J]. Power System Technology, 2017, 41(6): 1847-1854.
[39] Sheng Hongzhang, Wang Chengfu, Li Bowen, et al.Multi-timescale active distribution network scheduling considering demand response and user comprehensive satisfaction[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 1995-2005.
[40] 刘俊峰, 罗燕, 侯媛媛, 等. 考虑广义储能的微电网主动能量管理优化算法研究[J]. 电网技术, 2023, 47(1): 245-255.
Liu Junfeng, Luo Yan, Hou Yuanyuan, et al.Research on optimization algorithm of active microgrid energy management considering generalized energy storage[J]. Power System Technology, 2023, 47(1): 245-255.
[41] 王珂, 姚建国, 余佩遥, 等. 基于深度强化学习的电网前瞻调度智能决策架构及关键技术初探[J]. 中国电机工程学报, 2022, 42(15): 5430-5439.
Wang Ke, Yao Jianguo, Yu Peiyao, et al.Architecture and key technologies of intelligent decision-making of power grid look-ahead dispatch based on deep reinforcement learning[J]. Proceedings of the CSEE, 2022, 42(15): 5430-5439.
[42] 李相俊, 马锐. 考虑电池组健康状态的储能系统能量管理方法[J]. 电网技术, 2020, 44(11): 4210-4217.
Li Xiangjun, Ma Rui.Energy management method of energy storage system considering the SOH of battery pack[J]. Power System Technology, 2020, 44(11): 4210-4217. |