Analysis of Removing Impurity Defects in Hydraulic Test of Cylindrical Head Suspended Porcelain Insulator
Yi Mingzhe, Wen Lu, Mei Hongwei, Cao Bin, Wang Liming
Institute of Advanced Technologies in Energy and Electrical Engineering Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
Porcelain parts of insulator are generally made of calcined alumina and inorganic minerals such as clay and feldspar in accordance with the ratio of firing. Due to impurities in raw materials and kilns in the production process, there may be defects such as impurities and pores in porcelain parts. In the actual operating environment, the insulator is subjected to electrical, thermal and mechanical stress, as a result of which internal defects of porcelain parts may be further expanded, resulting in a significant decline in the overall mechanical and electrical properties of the insulator. In order to improve the overall quality of insulators, DL/T 1001.1 stipulates that porcelain parts need to carry out hydraulic test one by one before adhesive assembly to remove the defects in porcelain parts, but the standard doesn’t clearly specify the key test parameter (water pressure), manufacturing enterprises set the pressure based on experience, the test parameters lack scientific basis. In order to scientifically guide the setting of the test conditions of the internal hydraulic test, the types and distribution positions of the removal defects by internal hydraulic test were statistically analyzed, and different factors affecting the sensitivity of the removal of impurities in the internal hydraulic test were analyzed.
First of all, the hydraulic test of domestic porcelain insulator manufacturers was investigated, and it was found that the manufacturers didn’t carry out detail statistics of the position and type of defects removed by the hydraulic test. The author went to a domestic insulator manufacturer to track a batch of products, collect the porcelain pieces destroyed in the hydraulic test, and classify the defects on the section, which are mainly divided into yellow core, micro-cracks, impurities and so on.
Secondly, the article has analyzed the internal stress distribution of intact porcelain parts in the hydraulic test by finite element simulation. On this basis, according to different types of defects, the stress calculation is carried out by setting up defect model. The stress distribution in the hydraulic test is taken as the boundary stress condition of the calculation of submodel, and different defects are set in the submodel to calculate the local stress. The sensitivity of internal hydraulic test to remove different defects is analyzed by calculating the stress concentration coefficient at the defect. According to the results, the influence of elastic modulus, size and shape of impurities and different stress boundary conditions on the stress concentration coefficient at the defect is analyzed.
Finally, the article analyzed the reasonableness of the current hydraulic test conditions in the manufacturers based on the first principal theory. The subsequent work will further optimize the setting of internal water pressure test conditions based on the statistical accumulation of defect removal data from the manufacturer's internal water pressure test and the actual operation of the large-tonnage porcelain insulators produced by the manufacturer in the line.
仪明哲, 文路, 梅红伟, 曹彬, 王黎明. 内水压试验对大吨位圆柱头瓷绝缘子杂质缺陷剔除有效性研究[J]. 电工技术学报, 0, (): 2492920-2492920.
Yi Mingzhe, Wen Lu, Mei Hongwei, Cao Bin, Wang Liming. Analysis of Removing Impurity Defects in Hydraulic Test of Cylindrical Head Suspended Porcelain Insulator. Transactions of China Electrotechnical Society, 0, (): 2492920-2492920.
[1] 关志成. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006.
[2] 周兆禹. 盘形悬式绝缘子的结构分析与优化[D]. 包头: 内蒙古科技大学, 2012.
Zhou Zhaoyu.Structure Analysis and Optimization of the Cap and Pin Insulator[D]. Baotou: Inner Mongolia University of Science & Technology, 2012.
[3] 周学明, 尹骏刚, 胡丹晖, 等. 圆柱头盘形悬式瓷绝缘子钢脚结构优化分析[J]. 电瓷避雷器, 2022(2): 159-166.
Zhou Xueming, Yin Jungang, Hu Danhui, et al.Pin structure optimization of cylindrical head suspension porcelain insulator[J]. Insulators and Surge Arresters, 2022(2): 159-166.
[4] 刘洪吉, 耿三平, 王军, 等. 特高压交流输电线路瓷绝缘子劣化分析[J]. 电瓷避雷器, 2022(6): 159-164.
Liu Hongji, Geng Sanping, Wang Jun, et al.Aging analysis of porcelain insulators used in UHV AC transmission line[J]. Insulators and Surge Arresters, 2022(6): 159-164.
[5] 王博, 张丹丹, 闫振华, 等. 温度对瓷支柱绝缘子机械性能影响仿真研究[J]. 高压电器, 2020, 56(4): 74-79.
Wang Bo, Zhang Dandan, Yan Zhenhua, et al.Simulation study on the influence of temperature on the mechanical properties of porcelain post insulator[J]. High Voltage Apparatus, 2020, 56(4): 74-79.
[6] 高博, 闫振华, 赵禹来, 等. 瓷件微观结构对悬式瓷绝缘子机械性能和抗温度变化性能的影响研究[J]. 电瓷避雷器, 2019(5): 255-261.
Gao Bo, Yan Zhenhua, Zhao Yulai, et al.Study on the effect of ceramic microstructure on mechanical properties and temperature resistance of suspended porcelain insulators[J]. Insulators and Surge Arresters, 2019(5): 255-261.
[7] Cherney E A, Baker A C, Kuffel J, et al.Evaluation of and replacement strategies for aged high voltage porcelain suspension-type insulators[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 275-282.
[8] 宿志一, 车文俊. 电网运行中绝缘子的损坏原因及检测[J]. 电力设备, 2005(3): 10-13.
Su Zhiyi, Che Wenjun.Damage reason and detection of insulator in power network operation[J]. Electrical Equipment, 2005(3): 10-13.
[9] 陈国宏, 高嵩, 黄瑞平, 等. 机械振动疲劳条件下装配缺陷盘形悬式瓷绝缘子串元件劣化试验研究[J]. 电瓷避雷器, 2021(4): 203-208.
Chen Guohong, Gao Song, Huang Ruiping, et al.Experimental investigation on degradation of the high-voltage porcelain insulator string units containing assembly defects during mechanical vibration fatigue[J]. Insulators and Surge Arresters, 2021(4): 203-208.
[10] 宋治波, 杨昊, 申巍, 等. 交流电压下伞型结构对染污绝缘子电弧路径及绝缘性能的影响[J].电工技术学报:1-11.
Song Zhibo, Yang Hao, Shen Wei, et al.Influence of Umbrella Structure on the Arc Path and Insulating Properties of Contaminated Insulators Under AC Voltage[J]. Transactions of China Electrotechnical Society.
[11] 余颖, 刘亚东, 李维, 等. 配电线路针式绝缘子早期故障动态特性研究[J]. 电工技术学报, 2023, 38(1): 71-82.
Yu Ying, Liu Yadong, Li Wei, et al.Simulation and experimental research on pin insulator incipient fault dynamic characteristic in the distribution network[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 71-82.
[12] 裴少通, 马子儒, 刘云鹏, 等. 500 kV输电线路劣化瓷绝缘子非线性发热特性的红外分析[J]. 高压电器, 2024, 60(1): 33-40.
Pei Shaotong, Ma Ziru, Liu Yunpeng, et al.Infrared analysis of nonlinear heating characteristics of deteriorated porcelain insulator of 500 kV transmission lines[J]. High Voltage Apparatus, 2024, 60(1): 33-40.
[13] Okada T, Kimoto I.Improvement of suspension insulator reliability by porcelain proof testing[C]//1968 8th Electrical Insulation Conference, Los Angeles, CA, USA, 1968: 173-176.
[14] Fujimura T.The evolution of porcelain insulator technology in Japan[J]. IEEE Electrical Insulation Magazine, 1995, 11(3): 26-36.
[15] 国家能源局. 标称电压高于1000V架空线路绝缘子使用导则第1部分:交流系统用瓷或玻璃绝缘子: DL/T 1000.1—2018[S]. 北京: 中国电力出版社, 2019.
[16] 王黎明, 汪创, 袁田, 等. 高压直流输电线路耐张串用长棒形悬式瓷绝缘子的机械特性[J]. 高电压技术, 2012, 38(3): 655-662.
Wang Liming, Wang Chuang, Yuan Tian, et al.Mechanical characteristics of porcelain long rod suspension insulators for tension strings on HVDC transmission lines[J]. High Voltage Engineering, 2012, 38(3): 655-662.
[17] 杨海涛, 陈庆涛, 丁国成, 等. 高压支柱瓷绝缘子力学特性分析及断裂机理研究[J]. 电瓷避雷器, 2017(4): 178-183.
Yang Haitao, Chen Qingtao, Ding Guocheng, et al.Mechanical properties analysis and fracture mechanism study of high voltage post porcelain insulator[J]. Insulators and Surge Arresters, 2017(4): 178-183.
[18] 张廼龙, 刘洋, 高嵩, 等. 盘型悬式绝缘子瓷件的应力分析和结构优化[J]. 哈尔滨工业大学学报, 2021, 53(2): 98-103.
Zhang Nailong, Liu Yang, Gao Song, et al.Stress analysis and structural optimization of porcelain for disc suspension insulator[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 98-103.
[19] 徐鹏飞, 田金涛, 孙明道, 等. 252 kV三相共箱盆式绝缘子应力测试与分析[J]. 高压电器, 2021, 57(10): 120-126.
Xu Pengfei, Tian Jintao, Sun Mingdao, et al.Stress test and analysis of 252 kV three-phase insulating spacer[J]. High Voltage Apparatus, 2021, 57(10): 120-126.
[20] 郭子豪, 王浩然, 李禾, 等. 特高压盆式绝缘子水压试验中应力应变分布的仿真计算与光纤测量[J]. 高电压技术, 2018, 44(3): 993-1002.
Guo Zihao, Wang Haoran, Li He, et al.Calculation and experimental study on strain and stress distribution of UHV GIS spacer during hydrostatic test[J]. High Voltage Engineering, 2018, 44(3): 993-1002.
[21] Wang Haoran, Guo Zihao, Feng Hua, et al.Simulation and experimental study on mechanical performance of UHV GIS spacer in hydrostatic test[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3122-3131.
[22] 施毅舟, 张欣, 李西育, 等. 基于应力应变分析的盆式绝缘子破裂趋势判断方法研究[J]. 电瓷避雷器, 2015(2): 19-22, 30.
Shi Yizhou, Zhang Xin, Li Xiyu, et al.Judgment method of basin insulator rupture process based on the analysis of stress and strain[J]. Insulators and Surge Arresters, 2015(2): 19-22, 30.
[23] 张语桐, 吴泽华, 徐家忠, 等. 特高压GIS用单支撑绝缘子绝缘结构优化设计[J]. 电工技术学报, 2023, 38(1): 258-269.
Zhang Yutong, Wu Zehua, Xu Jiazhong, et al.Optimization design of insulation structure for post insulator in UHVAC GIS[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 258-269.
[24] 王超, 李文栋, 陈泰然, 等. 550k V GIS盆式绝缘子小型化设计(一): 几何形状优化[J]. 电工技术学报, 2022, 37(7): 1847-1855.
Wang Chao, Li Wendong, Chen Tairan, et al.Compact design of 550 kV basin-type spacer in gas insulated switchgear(part I)—structure optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1847-1855.
[25] 李群, 高嵩, 杨生哲, 等. 国产特高压大吨位悬式瓷绝缘子机电性能提升与工艺优化方法[J]. 电工技术学报, 2023, 38(19): 5304-5315.
Li Qun, Gao Song, Yang Shengzhe, et al.Mechanical and electrical performance improvement and process optimization of domestic UHV large tonnage suspension porcelain insulator[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5304-5315.
[26] 付云伟, 张龙, 倪新华, 等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162.
Fu Yunwei, Zhang Long, Ni Xinhua, et al.Interface cracking analysis with inclusions interaction in composite ceramic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162.
[27] 尹光志, 刘超, 李铭辉, 等. 椭圆形钻孔应力场解析解及水力压裂特性[J]. 煤炭学报, 2019, 44(增刊1): 61-73.
Yin Guangzhi, Liu Chao, Li Minghui, et al.Analytical solution of stress field on elliptical borehole and its hydraulic fracturing characteristics[J]. Journal of China Coal Society, 2019, 44(S1): 61-73.
[28] 杨万科, 王启智, 廖丽萍, 等. 远场三轴应力作用下一般椭球洞的应力分布[J]. 地下空间与工程学报, 2011, 7(3): 435-443.
Yang Wanke, Wang Qizhi, Liao Liping, et al.Stress distribution of the general ellipsoidal cavity in infinite body subjected to triaxial compressive stresses[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(3): 435-443.
[29] 廖丽萍, 杨万科, 王启智. 椭球形空洞地基稳定性分析[J]. 岩土力学, 2010, 31(增刊2): 138-148.
Liao Liping, Yang Wanke, Wang Qizhi.Stability analysis of an ellipsoidal cavity in foundation[J]. Rock and Soil Mechanics, 2010, 31(S2): 138-148.
[30] 邹德仕, 于清波. 圆柱头瓷绝缘子生产过程中内水压值的确定方法[J]. 电工材料, 2022(2): 65-67.
Zou Deshi, Yu Qingbo.Method for determining the value of hydraulic inner pressure test in cylindrical head suspension porcelain[J]. Electrical Engineering Materials, 2022(2): 65-67.
[31] 邵仕超. 圆柱头盘形悬式瓷绝缘子设计研究[D]. 北京: 清华大学, 2021.
Shao Shichao.Study on the design of disc porcelain suspension insulator with cylindrical head[D]. Beijing: Tsinghua University, 2021.
[32] 李玉书, 吴落义, 李瑛. 电瓷工艺与技术[M]. 北京: 化学工业出版社, 2007.
[33] Danzer R, Lube T, Supancic P, et al.Fracture of ceramics[J]. Advanced Engineering Materials, 2008, 10(4): 275-298.
[34] 龚江宏. 陶瓷材料断裂力学[M]. 北京: 清华大学出版社, 2001.