The Very Fast Transient Overvoltage Simulation Method Based on Two-Temperature MHD Arc Simulation to Improve Mayr Arc Model
Cui Jian1, Sun Shuai1, Zhang Guogang1, Chen Yun2, Cui Boyuan2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. China Electric Power Research Institute Beijing 100192 China
Abstract:Gas insulated switchgear (GIS) is the core equipment in ultra-high voltage (UHV) transmission engineering. During the process of closing short busbar in the UHV GIS disconnector, the very fast transient overvoltage (VFTO) will inevitably occur, causing insulation threats to the GIS and connected equipment, polluting the electromagnetic environment of secondary equipment, and seriously affecting the safe and stable operation of the power system. Since the accuracy of VFTO simulation is closely related to the equivalent arc model of the disconnertor, it is of great significance for VFTO simulation to establish an arc model that can more accurately characterize transient arc characteristics. In VFTO simulation studies, the traditional time-varying resistance arc model lacks accuracy and the classic arc black-box models rely too heavily on experimental data. To address the problems, an improved Mayr arc model based on two-temperature magnetohydrodynamics (MHD) simulation is established and applied to VFTO simulation to realize the simulation calculation of VFTO during the process of closing short busbar in the UHV GIS disconnector and verified in accuracy. Firstly, the arc-burning phenomenon during the process of closing short busbar in the UHV GIS disconnector are analyzed, combined with plasma thermodynamic equilibrium conditions and the high frequency characteristics of VFTO. The analysis results show that the arc plasmas in the arc-burning process are in the thermodynamic nonequilibrium state, thus the electromagnetic induction phenomenon cannot be ignored. According to the analysis, the time-varying electromagnetic field control equation is obtained through the Maxwell equation system and Lorentz specification. Subsequently, a two-temperature MHD arc model under multiphysics coupling is established by combining the time-varying electromagnetic field control equation and the airflow field control equation. Through the two-temperature MHD simulation, the arc time constant and heat dissipation power are obtained, the function relationship between the above key parameters and arc conductance is established through parameter fitting, and then the improved Mayr arc model is obtained. Finally, the equivalent model of the electric equipment in the test circuit was selected, and a VFTO simulation model was established, according to the structure of the test circuit, and then the VFTO simulation during the process of closing short busbar in the UHV GIS disconnector is carried out by using the improved Mayr arc model and several traditional arc models as equivalent disconnector module. In addition, the results of VFTO amplitude, main frequency and wavefront rise time of the improved Mayr arc model and several traditional arc models are simulated and compared. The compared results reveal that the VFTO simulation results obtained by the improved Mayr arc model reach great agreement with the measured results, and the VFTO simulation results under the improved Mayr arc model are more accurate than other traditional arc models. Furthermore, the above work shows that the improved Mayr arc model established by two-temperature MHD simulation can more accurately characterize the transient arc characteristics during the process of closing short busbar in the UHV GIS disconnector, improve the VFTO calculation accuracy compared with the traditional arc models, and reducing the dependence of VFTO simulation on experimental data.
崔建, 孙帅, 张国钢, 陈允, 崔博源. 基于双温度磁流体电弧仿真改进Mayr电弧模型的特快速暂态过电压仿真方法[J]. 电工技术学报, 2024, 39(16): 5149-5161.
Cui Jian, Sun Shuai, Zhang Guogang, Chen Yun, Cui Boyuan. The Very Fast Transient Overvoltage Simulation Method Based on Two-Temperature MHD Arc Simulation to Improve Mayr Arc Model. Transactions of China Electrotechnical Society, 2024, 39(16): 5149-5161.
[1] 李红斌, 韩林汕, 叶国雄, 等. 基于频敏高-低阻层叠母线结构的特快速暂态过电压高频成分抑制方法[J]. 电工技术学报, 2022, 37(19): 4969-4977. Li Hongbin, Han Linshan, Ye Guoxiong, et al.A suppressing method for very fast transient overvoltage based on a frequency-sensitive busbar with a laminated-material structure[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4969-4977. [2] 张文斌, 胡洋. GIS中快速暂态过电压VFTO的抑制研究进展[J]. 高电压技术, 2023, 49(1): 418-431. Zhang Wenbin, Hu Yang.Research progress in suppression of fast transient overvoltage VFTO in GIS[J]. High Voltage Engineering, 2023, 49(1): 418-431. [3] 刘鹏, 郭伊宇, 吴泽华, 等. 特高压换流站大尺寸典型电极起晕特性的仿真与试验[J]. 电工技术学报, 2022, 37(13): 3431-3440. Liu Peng, Guo Yiyu, Wu Zehua, et al.Simulation and experimental study on corona characteristics of large size typical electrodes used in UHV converter station[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3431-3440. [4] 李振华, 廖星锐, 童悦, 等. 基于动态重燃弧模型的VFTO与VFTC仿真及特性分析[J]. 电力系统保护与控制, 2023, 51(3): 79-88. Li Zhenhua, Liao Xingrui, Tong Yue, et al.Simulation and characteristic analysis of VFTO and VFTC based on a dynamic reignition arc model[J]. Power System Protection and Control, 2023, 51(3): 79-88. [5] 杨明波, 龙毅, 樊三军, 等. 基于组合Mayr和Cassie电弧模型的弧光接地故障仿真及分析[J]. 电测与仪表, 2019, 56(10): 8-13. Yang Mingbo, Long Yi, Fan Sanjun, et al.Simulation and analysis of arc grounding fault based on combined Mayr and Cassie arc models[J]. Electrical Measurement & Instrumentation, 2019, 56(10): 8-13. [6] 林莘, 王娜, 徐建源. 动态电弧模型下特快速瞬态过电压特性的计算与分析[J]. 中国电机工程学报, 2012, 32(16): 157-164. Lin Xin, Wang Na, Xu Jianyuan.Calculation and analysis of very fast transient over-voltage characteristic on the condition of dynamic arcing model[J]. Proceedings of the CSEE, 2012, 32(16): 157-164. [7] 滕辉. 精确电弧模型下GIS中VFTO的计算与分析[D]. 南宁: 广西大学, 2013. Teng Hui.Calculation and analysis of vesy fast transient overvoltage in GIS based on accurate arc model[D]. Nanning: Guangxi University, 2013. [8] 刘艳丽, 郭凤仪, 李磊, 等. 一种串联型故障电弧数学模型[J]. 电工技术学报, 2019, 34(14): 2901-2912. Liu Yanli, Guo Fengyi, Li Lei, et al.A kind of series fault arc mathematical model[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2901-2912. [9] 曹云东, 纪腾飞, 刘晓明, 等. 高压SF6断路器三维动态电弧仿真[J]. 沈阳工业大学学报, 2012, 34(2): 125-130. Cao Yundong, Ji Tengfei, Liu Xiaoming, et al.Three-dimensional dynamic arc simulation for high-voltage SF6 circuit breaker[J]. Journal of Shenyang University of Technology, 2012, 34(2): 125-130. [10] 李静, 刘凯, 曹云东, 等. 直流接触器分断过程中弧根演变及对重燃的影响分析[J]. 中国电机工程学报, 2019, 39(4): 1241-1251. Li Jing, Liu Kai, Cao Yundong, et al.Arc root development and its influence on arc reigniting during the breaking process of the DC contactor[J]. Proceedings of the CSEE, 2019, 39(4): 1241-1251. [11] 彭世东, 李静, 曹云东, 等. 耦合磁场直流空气断路器栅片特性对灭弧性能的影响研究[J]. 电工技术学报, 2022, 37(21): 5587-5597. Peng Shidong, Li Jing, Cao Yundong, et al.Research on the effect of splitter plate material and structure on arc extinguishing performance with coupling magnetic field[J]. Transactions of China Electro-technical Society, 2022, 37(21): 5587-5597. [12] 郝莎, 徐建源, 林莘. 隔离开关电弧流体数学模型研究与应用[J]. 电工技术学报, 2021, 36(13): 2710-2718. Hao Sha, Xu Jianyuan, Lin Xin.Study on the application of fluid arc model in disconnector[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2710-2718. [13] Yang Fan, Tang Zhaohui, Shen Yu, et al.Parameter determination method of cassie-mayr hybrid arc model based on magnetohydrodynamics plasma theory[J]. Frontiers in Energy Research, 2022, 10: 808289. [14] 夏亚龙, 林莘, 徐建源, 等. 非平衡态SF6等离子体弛豫特性研究[J]. 电工技术学报, 2018, 33(5): 1125-1132. Xia Yalong, Lin Xin, Xu Jianyuan, et al.Study on the relaxation characteristics of non-equilibrium SF6 plasma[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1125-1132. [15] 郝莎. 隔离开关多次重复击穿电弧及其高频暂态过电压特性研究[D]. 沈阳: 沈阳工业大学, 2020. Hao Sha.Study on disconnector repeated arc and high frequency transient characteristics of the generated overvoltage[D]. Shenyang: Shenyang University of Technology, 2020. [16] 荣命哲, 吴翊, 杨飞, 等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12, 23. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12, 23. [17] 林莘, 王亮, 徐建源, 等. 非平衡态双温度SF6等离子体电弧数学模型研究[J]. 高压电器, 2015, 51(3): 1-7, 14. Lin Xin, Wang Liang, Xu Jianyuan, et al.Non-equilibrium dual temperature SF6 plasma arc mathematical model research[J]. High Voltage Apparatus, 2015, 51(3): 1-7, 14. [18] 荣命哲, 仲林林, 王小华, 等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19): 54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al.Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 54-65. [19] 申萌, 丁登伟, 李强, 等. GIS隔离开关开合短母线型式试验方式1中VFTO测量系统构建及波形解析[J]. 高压电器, 2022, 58(7): 207-213. Shen Meng, Ding Dengwei, Li Qiang, et al.Construction of VFTO measurement system and waveform analysis for switching test duty 1 of short busbar by GIS disconnector[J]. High Voltage Apparatus, 2022, 58(7): 207-213. [20] 魏梅芳, 吴细秀, 田芸, 等. 1100kV GIS中特快速暂态电流VFTC的暂态特性研究[C]//中国电机工程学会高电压专业委员会2015年学术年会论文集, 西安, 中国, 2015: 1-9. Wei Meifang, Wu Xixiu, Tian Yun, et al.Studying on the transient characteristics of VFTC in a 1100kV GIS[C]//2015 Annual Conference of High Voltage Professional Committee of CSEE, Xi’an, China, 2015: 1-9. [21] 苏春强, 丁登伟, 李强, 等. GIS隔离开关方式1试验中断口对地击穿时光电暂态过程监测与分析[J]. 高压电器, 2022, 58(5): 56-62. Su Chunqiang, Ding Dengwei, Li Qiang, et al.Monitoring and analysis of optical and electric transient process induced by breakdown-to-ground during type test duty 1 of GIS disconnector[J]. High Voltage Apparatus, 2022, 58(5): 56-62. [22] 李博通, 刘涛, 杨昕陆, 等. 故障自清除型直流配电网新型双极短路故障元件识别方法[J]. 电工技术学报, 2022, 37(17): 4423-4434. Li Botong, Liu Tao, Yang Xinlu, et al.New fault element identification method of bipolar short-circuit fault in DC distribution network with fault self-clearing[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4423-4434.