Converter Transformer Noise Equivalent Evaluation Method in Multi-Harmonic Operating Conditions Based on the Electro-Induced Noise Frequency Response Function
Wang Shichang1, Zhu Lingyu1, Wu Shuyu1, Wu Jian2, Liu Zhiyuan3, Geng Mingxin4, Wang Lü4, Zhang Fan1, Ji Shengchang1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China 2. State Grid Shaanxi Electric Power Company Xi'an 710048 China 3. Ultra-High Voltage Company of State Grid Ningxia Electric Power Company Yinchuan 750011 China 4. Electric Power Research Institute of State Grid Shaanxi Electric Power Company Xi'an 710199 China
Abstract:When the noise assessment of the converter transformer before leaving the factory, the basic data generally adopts the test value of the equipment manufacturer or the previous engineering data, and there is a certain gap between the test conditions and the actual working conditions of the site and the actual working conditions, which is difficult to accurately reflect the actual noise situation of the equipment. The electrical equipment in the converter station is larger in size and close to the distance, and a series of reflections, diffraction and other phenomena will occur when obstacles are encountered in the process of noise propagation, and it is difficult to accurately measure the sound source and achieve accurate evaluation of the sound power level of a single device. In order to accurately evaluate the noise level of a single power device, it is particularly important to propose a more accurate factory test method for converter transformer noise. The injection of harmonic current and voltage is the main factor in the rise of the noise level of the converter transformer operation. By using the relationship between the radiated sound pressure of the converter transformer and the square of the excitation voltage and the square of the current, the equivalent evaluation method of the noise of the converter transformer is proposed, taking the equivalent actual multi-harmonic operating conditions as the goal. The single-frequency superposition test is to evaluate the noise level of the converter transformer under the loaded complex frequency excitation by using the result of the single frequency excitation loading noise test through the superposition theorem. Capacitance reduction test is an alternative loading scheme in the case that the capacity of multi-frequency harmonic power supply cannot meet the direct loading, and add 40lgm (reduction ratio) to the capacity reduction test result to obtain the noise level at full capacity. The single-frequency superposition and capacitance reduction tests of the converter transformer are carried out to obtain the radiated noise under different harmonic operating conditions of the converter transformer, and the effectiveness and accuracy of the proposed method are analyzed and compared to verify the noise frequency characteristics and sound field distribution measured and evaluated. The results show that the noise error obtained by the single-frequency superposition test is within 1.8 dB, and the noise error obtained by the capacitance reduction loading test is within 1.6 dB, which greatly improves the accuracy of the noise evaluation of the converter transformer compared with the previous power frequency loading method. The proposed equivalent evaluation test method provides an effective method for converter transformer manufacturers to grasp the noise performance of product operation, and at the same time provides a strong support for the noise design and treatment of converter station.
[1] 冯春林, 刘青林, 卢世明, 等. 换流站交流滤波电容器装置降噪改造效果现场测试[J]. 电力电容器与无功补偿, 2018, 39(5): 1-6. Feng Chunlin, Liu Qinglin, Lu Shiming, et al.Field test on noise reduction effect of AC filter capacitor installation in converter station[J]. Power Capacitor & Reactive Power Compensation, 2018, 39(5): 1-6. [2] 裴春明, 吴晓文, 胡胜, 等. 750 kV变电站可听噪声特性及分布规律[J]. 高压电器, 2016, 52(1): 101-105, 111. Pei Chunming, Wu Xiaowen, Hu Sheng, et al.Audible noise distribution and characteristics of a 750 kV substation[J]. High Voltage Apparatus, 2016, 52(1): 101-105, 111. [3] 汲胜昌, 师愉航, 张凡, 等. 电力变压器振动与噪声及其控制措施研究现状与展望[J]. 高压电器, 2019, 55(11): 1-17. Ji Shengchang, Shi Yuhang, Zhang Fan, et al.Review on vibration and noise of power transformer and its control measures[J]. High Voltage Apparatus, 2019, 55(11): 1-17. [4] 翟国庆, 张邦俊. 室内箱式变压器结构声污染及对策[J]. 环境污染与防治, 2002, 24(1): 36-38, 49. Zhai Guoqing, Zhang Bangjun.Structural noise pollution and controlment of transformer[J]. Environmental Pollution & Control, 2002, 24(1): 36-38, 49. [5] 张琛, 石磊, 赵宇彤, 等. 城市配电室噪声与振动控制分析[J]. 环境工程学报, 2016, 10(2): 971-977. Zhang Chen, Shi Lei, Zhao Yutong, et al.Analysis of noise and vibration control of urban power distribution room[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 971-977. [6] 王骅, 陈锦栋, 黄青青, 等. 居住区内10kV变配电站的噪声污染及治理[J]. 噪声与振动控制, 2015, 35(4): 107-111. Wang Hua, Chen Jindong, Huang Qingqing, et al.Noise pollution and control of 10 kV substations in residential zones[J]. Noise and Vibration Control, 2015, 35(4): 107-111. [7] 关宏, 王庭佛, 郜树民, 等. 10kV和35kV变配电站的噪声影响和治理[J]. 噪声与振动控制, 2002, 22(5): 38-41, 43. Guan Hong, Wang Tingfo, Gao Shumin, et al.Noise influence and treatment of 10kV and 35kV power distribution station[J]. Noise and Vibration Control, 2002, 22(5): 38-41, 43. [8] 樊小鹏, 李丽, 刘嘉文. 户内配电变压器结构噪声污染分析及控制措施[J]. 噪声与振动控制, 2014, 34(6): 135-139. Fan Xiaopeng, Li Li, Liu Jiawen.Analysis and control of structural noise pollution of indoor distribution transformers[J]. Noise and Vibration Control, 2014, 34(6): 135-139. [9] 吴晓文, 周年光, 彭继文, 等. 电力变压器噪声特性与相关因素分析[J]. 电力科学与技术学报, 2018, 33(3): 81-85, 146. Wu Xiaowen, Zhou Nianguang, Peng Jiwen, et al.Noise characteristic and relevant factors analysis of power transformers[J]. Journal of Electric Power Science and Technology, 2018, 33(3): 81-85, 146. [10] 吴书煜, 汲胜昌, 孙建涛, 等. 在运换流变压器振动监测及其变化规律[J]. 高电压技术, 2022, 48(4): 1561-1570. Wu Shuyu, Ji Shengchang, Sun Jiantao, et al.Vibration monitoring and variation law of converter transformer in operation[J]. High Voltage Engineering, 2022, 48(4): 1561-1570. [11] 李清泉, 王良凯, 王培锦, 等. 换流变压器油纸绝缘局部放电及电荷分布特性研究综述[J]. 高电压技术, 2020, 46(8): 2815-2829. Li Qingquan, Wang Liangkai, Wang Peijin, et al.Review on partial discharge and charge distribution characteristics of oil-paper insulation in converter transformer[J]. High Voltage Engineering, 2020, 46(8): 2815-2829. [12] 潘志城, 邓军, 彭翔, 等. 计及谐波影响的在运换流变压器振动信号特性分析[J]. 变压器, 2021, 58(9): 63-67, 47. Pan Zhicheng, Deng Jun, Peng Xiang, et al.Analysis of vibration signal characteristics of converter transformer in operation considering harmonic effect[J]. Transformer, 2021, 58(9): 63-67, 47. [13] 陈生栋. 特高压换流变压器绕组谐波特性与结构优化的研究[D]. 北京: 华北电力大学, 2021. [14] 阮学云, 李志远, 魏浩征, 等. 换流变压器噪声预测模型及其简化研究[J]. 应用声学, 2011, 30(3): 235-240. Ruan Xueyun, Li Zhiyuan, Wei Haozheng, et al.Studies on noise prediction model and simplification for current convert transformers[J]. Applied Acoustics, 2011, 30(3): 235-240. [15] 阮学云, 李志远, 魏浩征. 换流变压器户外相干噪声预测模型研究[J]. 高电压技术, 2015, 41(5): 1664-1670. Ruan Xueyun, Li Zhiyuan, Wei Haozheng.Coherent noise prediction model research of converter transformer[J]. High Voltage Engineering, 2015, 41(5): 1664-1670. [16] 阳金纯, 吴晓文, 吕建红, 等. 特高压换流站噪声源测试与预测技术研究[J]. 中国环境监测, 2018, 34(1): 138-144. Yang Jinchun, Wu Xiaowen, Lü Jianhong, et al.Research on noise source measurement and prediction technology of UHV converter station[J]. Environmental Monitoring in China, 2018, 34(1): 138-144. [17] 李健, 陆居志, 汲胜昌, 等. 电力电容器噪声等效电流测试方法研究[J]. 电力电容器与无功补偿, 2017, 38(4): 60-67. Li Jian, Lu Juzhi, Ji Shengchang, et al.Study on power capacitor nosie equivalent current measurement[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(4): 60-67. [18] 尤鸿芃, 姚成, 林丽妲. 电力电容器可听噪声的直流叠加激励法及其应用[J]. 电力电容器与无功补偿, 2017, 38(4): 68-72. You Hongpeng, Yao Cheng, Lin Lida.DC-superposed excitation source for audible noise test of power capacitor and its application[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(4): 68-72. [19] 姚成, 尤鸿芃, 陈永超, 等. 电容器噪声多频扫频法研究与试验验证[J]. 电力电容器与无功补偿, 2017, 38(4): 83-87. Yao Cheng, You Hongpeng, Chen Yongchao, et al.Research and test verification on multi-frequency sweeping method for capacitor noise[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(4): 83-87. [20] 王陆璐, 郭贤珊, 雷晓燕, 等. 不同谐波电流注入条件对电容器噪声影响的试验研究[J]. 电力电容器与无功补偿, 2017, 38(4): 47-53. Wang Lulu, Guo Xianshan, Lei Xiaoyan, et al.Test study for the influence of different harmonic injection current conditions on capacitor noise[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(4): 47-53. [21] 张嵩阳, 祝令瑜, 汲胜昌, 等. 基于频响函数干式空心电抗器噪声预估方法研究[J]. 电力电容器与无功补偿, 2020, 41(6): 71-77. Zhang Songyang, Zhu Lingyu, Ji Shengchang, et al.Noise predicting method of dry-type air-core reactor based on the frequency-response function[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(6): 71-77. [22] 陆居志, 李健, 汲胜昌, 等. 干式空心电抗器噪声等效电流测试方法研究[J]. 电力电容器与无功补偿, 2019, 40(1): 77-85. Lu Juzhi, Li Jian, Ji Shengchang, et al.Study on equivalent current test method of noise of dry-type air-core reactor[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(1): 77-85. [23] 莫娟, 张霞, 袁建生. 变压器空载与短路噪声频谱特性分析[J]. 电工电能新技术, 2015, 34(2): 76-80. Mo Juan, Zhang Xia, Yuan Jiansheng.Analysis of transformer noise frequency spectrum under short-circuit and no-load conditions[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(2): 76-80. [24] 莫娟, 刘吉轩, 苏俊收, 等. 大型电力变压器的噪声预估研究[J]. 高压电器, 2014, 50(6): 32-37, 44. Mo Juan, Liu Jixuan, Su Junshou, et al.Noise prediction of large power transformer[J]. High Voltage Apparatus, 2014, 50(6): 32-37, 44. [25] 莫娟, 苏俊收, 刘吉轩, 等. 大型电力变压器油箱辐射噪声预估研究[J]. 高压电器, 2014, 50(4): 12-16, 22. Mo Juan, Su Junshou, Liu Jixuan, et al.Radiated noise prediction for large power transformer tank[J]. High Voltage Apparatus, 2014, 50(4): 12-16, 22. [26] Stapelfeldt H, Vukadin P, Bublić I, et al.Reverse engineering - improving noise prediction in industrial noise impact studies[C]//Proceedings of EURONOISE 2009 8th European Conference on Noise Control, Edinburgh, Scotland, UK, 2009: 1-10. [27] Manveila D, Aflalo E, Stapelfeldt H.Reverse engineering: guidelines and practical issues of combining noise measurements and calculations[C]// INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise07, Istanbul, Turkey, 2007: 636-645. [28] 张景晨. 高压换流站噪声源的特性与反演方法研究[D]. 北京: 中国电力科学研究院, 2020. [29] 张景晨, 刘元庆, 李文昱, 等. 高压换流变压器声功率反演算法[J]. 电网技术, 2020, 44(6): 2369-2376. Zhang Jingchen, Liu Yuanqing, Li Wenyu, et al.Research on sound power inversion algorithm of HV converter transformer[J]. Power System Technology, 2020, 44(6): 2369-2376. [30] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 声学声压法测定噪声源声功率级和声能量级消声室和半消声室精密法: GB/T 6882—2016 [S]. 北京: 中国标准出版社, 2016. [31] 中国电器工业协会. 电力变压器第10部分: 声级测定: GB/T 1094.10—2003[S]. 北京: 中国标准出版社, 2004. [32] 张壮壮, 祝令瑜, 王磊磊, 等. 新型电力系统下负载因素对三相油浸式变压器振动噪声特性影响的试验研究[J]. 高压电器, 2022, 58(9): 45-54. Zhang Zhuangzhuang, Zhu Lingyu, Wang Leilei, et al.Test study on influence of load factors on vibration and noise characteristics of the three-phase oil immersed transformer under new power system[J]. High Voltage Apparatus, 2022, 58(9): 45-54. [33] 陈晨. 基于变压器噪声的硅钢片状态检测方法研究[D]. 武汉: 华中科技大学, 2013. [34] 李冰, 王泽忠, 刘海波, 等. 直流偏磁下500kV单相变压器振动噪声的试验研究[J]. 电工技术学报, 2021, 36(13): 2801-2811. Li Bing, Wang Zezhong, Liu Haibo, et al.Experiment on vibro-acoustic characteristic of 500kV single-phase transformer under DC-bias[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2801-2811. [35] 律方成, 汪鑫宇, 王平, 等. 基于振动偏离及加权熵的多次短路冲击下变压器绕组机械形变辨识[J]. 电工技术学报, 2023, 38(11): 3022-3032. Lü Fangcheng, Wang Xinyu, Wang Ping, et al.Mechanical deformation identification of transformer winding under multiple short-circuit impacts based on vibration deviation and weighted entropy[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3022-3032. [36] 杜厚贤, 刘昊, 雷龙武, 等. 基于振动信号多特征值的电力变压器故障检测研究[J]. 电工技术学报, 2023, 38(1): 83-94. Du Houxian, Liu Hao, Lei Longwu, et al.Power transformer fault detection based on multi-eigenvalues of vibration signal[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 83-94. [37] 王革鹏, 金文德, 曾向阳, 等. 特高压并联电抗器铁心振动的分析与控制研究[J]. 电工技术学报, 2022, 37(9): 2190-2198. Wang Gepeng, Jin Wende, Zeng Xiangyang, et al.Analysis and control research on core vibration of UHV shunt reactor[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2190-2198. [38] 赵莉华, 徐立, 刘艳, 等. 基于点对称变换与图像匹配的变压器机械故障诊断方法[J]. 电工技术学报, 2021, 36(17): 3614-3626. Zhao Lihua, Xu Li, Liu Yan, et al.Transformer mechanical fault diagnosis method based on symmetrized dot patter and image matching[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3614-3626. [39] 朱叶叶, 汲胜昌, 张凡, 等. 电力变压器振动产生机理及影响因素研究[J]. 西安交通大学学报, 2015, 49(6): 115-125. Zhu Yeye, Ji Shengchang, Zhang Fan, et al.Vibration mechanism and influence factors in power transformers[J]. Journal of Xi’an Jiaotong University, 2015, 49(6): 115-125.