Study on Transient Insulation Condition of Converter Transformer Based on Nonlinearity Between Temperature and Electric Field
Yang Fan1, Chi Cheng1, Liu Gang2, Cheng Li1, Ou Shucheng3
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 3. Baotou Power Supply Bureau of Inner Mongolia Electric Power Group Co. Ltd Baotou 014000 China
Abstract:Converter transformer bears high voltage during operation, and the internal insulation system has high temperature, large electric field intensity and obvious coupling phenomenon. However, the traditional insulation design method does not consider the nonlinear insulation characteristics.. First, a three-electrode experimental platform is constructed to analyze the coupling phenomenon of insulating oil and oil-immersed paperboard at different temperatures and electric field intensities. Results indicate that the electrical conductivity of insulating materials is greatly affected by temperature and electric field intensity, in which the inflection point of insulating oil is 2kV/mm, and the electrical conductivity presents a U-shaped nonlinear curve that first decreases and then increases. Then, a practical converter transformer model is built with refine insulation layer, collar ring and spacer to calculate transient insulation condition with the effect of temperature and electric field. It indicates that converter transformer has larger temperature range and the maximum temperature growth can be up to 68.7K, meanwhile the concentrated temperature area is next to the larger electric field region, so a strong coupling phenomenon cannot be ignored. Under polarity reversal condition, the maximum value of pressboard electric field with U-type electric-dependence increases 1.7kV/mm compared with exponential variation, and reaction rate would decrease in taking nonlinearity between temperature and electric field into account.
杨帆, 池骋, 刘刚, 成立, 欧书成. 计及温度-电场强度非线性的换流变压器瞬态电场影响分析[J]. 电工技术学报, 2020, 35(23): 4971-4979.
Yang Fan, Chi Cheng, Liu Gang, Cheng Li, Ou Shucheng. Study on Transient Insulation Condition of Converter Transformer Based on Nonlinearity Between Temperature and Electric Field. Transactions of China Electrotechnical Society, 2020, 35(23): 4971-4979.
[1] 张良县, 陈模生, 彭宗仁, 等. 非正弦负载电流下特高压换流变压器绕组的谐波损耗分析[J]. 中国电机工程学报, 2014, 34(15): 2452-2459. Zhang Liangxian, Chen Mosheng, Peng Zongren, et al.Study on the harmonic losses of UHVconverter transformer windings subject to non-sinusoidal load current[J]. Proceedings of the CSEE, 2014, 34(15): 2452-2459. [2] Zheng Jing, Huang Hai, Pan Jie.Detection of winding faults based on a characterization of the nonlinear dynamics of transformers[J]. IEEE Transactions on Instrumentation & Measurement, 2018, 68(1): 206-214. [3] 张荣伦, 王帅, 穆海宝. 大型电力变压器损耗带电测试技术研究[J]. 电工技术学报, 2019, 34(4): 683-692. Zhang Ronglun, Wang Shuai, Mu Haibao.The on-site method for the loss characteristic in power transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 683-692. [4] 杨志淳, 沈煜, 杨帆, 等. 考虑多元因素态势演变的配电变压器迁移学习故障诊断模型[J]. 电工技术学报, 2019, 34(7): 1505-1515. Yang Zhichun, Shen Yu, Yang Fan, et al.A transfer learning fault diagnosis model of distribution transformer considering multi-factor situation evolution[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1505-1515. [5] 彭丽丹, 李琳, 张宁. 换流变压器极性反转三维瞬态电场计算[J]. 高压电器, 2018, 54(6): 120-124. Peng Lidan, Li Lin, Zhang Ning.Calculation of 3D transient electric field of converter transformer under polarity reversal voltage[J]. High Voltage Apparatus, 2018, 54(6): 120-124. [6] 张明泽, 刘骥, 齐朋帅, 等. 基于介电响应技术的变压器油纸绝缘含水率数值评估方法[J]. 电工技术学报, 2018, 33(18): 221-231. Zhang Mingze, Liu Ji, Qi Pengshuai, et al.Numerical evaluation method for moisture content of transformer oil-paper insulation based on dielectric response technique[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 221-231. [7] Huang Leifeng, Wang Youyuan, Li Xi.Effect of moisture on breakdown strength of oil-paper insulation under different voltage types[C]//2018 IEEE International Conference on High Voltage Engineering and Application, Athens, 2018: 1-4. [8] 李佳欣, 刘文里, 张士江, 等. 极性反转电压下±400kV换流变压器绕组端部电场特性研究[J]. 电气应用, 2017(1): 32-36. Li Jiaxin, Liu Wenli, Zhang Shijiang, et al.Electric fields of winding end in ±400kV converter transformer under polarity reverse[J]. Electrotechnical application, 2017(1): 32-36. [9] 陈庆国, 侯帅, 池明赫, 等. 换流变压器出线装置电场分布与绝缘结构优化[J]. 高电压技术, 2013, 39(12): 2859-2868. Chen Qingguo, Hou Shuai, Chi Minghe, et al.Electrric field distribution in converter transformer outlet device and its insulation structure optimization[J]. High Volatge Engineering, 2013, 39(12): 2859-2868. [10] 谢裕清, 李琳, 宋雅吾, 等. 油浸式电力变压器绕组温升的多物理场耦合计算方法[J]. 中国电机工程学报, 2016, 36(21): 5957-5965. Xie Yuqing, Li Lin, Song Yawu, et al.Multi-Physical field coupled method for temperature rise of winding in oil-immersed power transformer[J]. Proceedings of the CSEE, 2016, 36(21): 5957-5965. [11] Zhang Xiang, Wang Zhongdong, Liu Qiang, et al.Numerical investigation of oil flow and temperature distributions for ON transformer windings[J]. Applied Thermal Engineering, 2018, 130: 1-9. [12] Terakura T, Takano K, Yasuoka T, et al.Transient electric field analysis in consideration of the electric field dependence of resistivity in the converter transformer[J]. Electrical Engineering in Japan, 2016, 198(1): 3-11. [13] 刘文里, 白仕光, 李祎春, 等. 高压直流换流变压器油纸绝缘线性与非线性电场分析[J]. 电机与控制学报, 2017, 21(9): 80-87. Liu Wenli, Bai Shiguang, Li Weichun, et al.Analysis of linear and nonlinear electric field of HVDC convert transformer oil-board insulation[J]. Electric machines and control, 2017, 21(9): 80-87. [14] Fabian J.HVDC Transformer Insulation: Oil Conductivity[J]. Electra, 2016, 285. [15] GB/T1410-2006固体绝缘材料体积电阻率和表面电阻率试验方法[S]. 2006. [16] IEC60296—Fluids for electrotechnical applications unused mineral insulating oils for transformers and switchgear[S]. 2012. [17] Commission IEEE.IEC 60641-2 pressboard and presspaper for electrical purposes - Part 3: Specifications for individual materials[S]. 2007. [18] Andre, Denat.Conduction and breakdown initiation in dielectric liquids[C]//2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 2011: 1-11. [19] Pontiga F, Castellanos A.A field-dependent injection-dissociation model for electrical conduction in nonpolar liquids[C]//Industry Applications Society Annual Meeting, Denver, Colorado, 1994:1645-1652. [20] Amar M, Kaczmarek R.A general formula for prediction of iron losses under non-sinusoidal voltage waveform[J]. IEEE Transactions on Magnetics, 1995, 31: 2504-2509. [21] 李琳, 谢裕清, 刘刚, 等. 油浸式电力变压器饼式绕组温升的影响因素分析[J]. 电力自动化设备, 2016, 36(12): 83-88. Li Lin, Xie Yuqing, Liu Gang, et al.Influencing factor analysis for disc-type winding temperature rise of oil-immersed power transformer[J]. Electric Power Automation Equipment, 2016, 36(12): 83-88. [22] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. [23] 倪光正. 工程电磁场原理[M]. 北京: 高等教育出版社, 2002. [24] GB/T 18494.2-2007换流变压器第2部分: 高压直流输电用换流变压器B/T 18494.2-2007换流变压器第2部分: 高压直流输电用换流变压器[S]. 2007.