Abstract:Contactor is an electrical appliance used to connect and disconnect circuits. And contactors are widely used in power switching, motor control, rail transit, new energy power generation and other scenarios. During the closing process, the contact bounce collision will produce arcs, and the high-frequency long time bounce process will significantly shorten the electrical life of the contactor. It is feasible to use sensorless control to suppress contact bounce. The sensorless control technology of constant air gap contactor is studied. Position sensorless control includes position prediction and dynamic control. The equivalent magnetic circuit method and parameter identification are used to realize position prediction. On the basis of position prediction, the simulation and experimental research of dynamic control are carried out. In order to reduce the contact bounce of the contactor, a position sensorless control method is proposed for the constant air gap contactors. The position information is extracted from the permanent magnet flux linkage through the equivalent magnetic circuit method and parameter identification, then control the actuator according to the location information. The equivalent magnetic circuit model of the electromagnetic force driving actuator (EMFA) is established, and the mapping relationship between dynamic flux linkage, displacement and current is deduced. The rationality of the mapping relationship is verified by “fixed method” and “prediction method”. The displacement, voltage and current are obtained through experiments, the flux linkage is calculated according to the experimental data, and the parameters of the displacement mapping are obtained by the method of multiple regression, and the position prediction of the contactor is completed. The predicted displacement is compared with the measured displacement, and the accuracy of position prediction is verified. Through the parameter scanning function of the finite element model, two surfaces of driving force and flux linkage are established, and the modeling of the contactor is completed by means of interpolation, position prediction and simulation without position control are carried out. Based on the simulation model, the calculated displacement is compared with the predicted displacement, and the accuracy of displacement prediction is verified. Based on the subsection PWM control strategy, the influence of duty cycle combination on the dynamic characteristics of the contactor is analyzed. The simulation results show that the terminal speed of the contactor is reduced with the gradual reduction of the duty cycle combination. The experimental platform is built. The experimental platform includes power module, chopper module, DSP module, contactor, sensor and voltage divider module. In the experiment, the coil current, contact bounce and contactor displacement under different duty cycle combinations are collected. The influence of duty cycle combination on closing time and bouncing time is analyzed. With the decrease of duty cycle combination, the bouncing time decreases gradually, while the closing time increases gradually. The experimental results show that the new position sensorless control method is suitable for constant air gap contactors. The accuracy of the position prediction and the effectiveness of the control method are verified. On the basis of simulation and experiment, the following conclusions are drawn: 1) The equivalent magnetic circuit method and parameter identification can be used to predict the position of the constant air gap contactor. 2)The EMFA simulation model is established by the difference method, and the dynamic control can effectively reduce the terminal speed. 3) The experiment proves that the control method is suitable for the constant air gap contactor, and the bounce time can be reduced by 90% under the condition of subsection control.
[1] 游颖敏, 王景芹, 舒亮,等. 基于音频特征的交流接触器电寿命预测方法[J]. 电工技术学报, 2021, 36(9):1986-1998. You Yingmin, Wang Jingqin, Shu Liang, et al Prediction method of electrical life of AC contactor based on audio characteristics[J] Journal of Electrical Technology, 2021, 36(9): 1986-1998. [2] 李奎, 张国盼, 郑淑梅,等. 基于实时服役参数的交流接触器电寿命最大化控制策略[J]. 电工技术学报, 2021. 36(9):1976-1958. Li Kui, Zhang Guopan, Zheng Shumei, et al Control Strategy for Maximizing Electrical Life of AC Contactors Based on Real time Service Parameters[J] Journal of Electrical Technology, 2021. 36(9): 1976-1958. [3] 贾博文,武建文,夏尚文,罗晓武,岳云霞.直流自然换流式接触器设计与均压开断研究[J].电工技术学报, 2021,36(20):4371-4378. Jia Bowen, Wu Jianwen, Xia Shangwen, Luo Xiaowu, Yue Yunxia.Research on the design of DC natural commutation contactor and voltage sharing breaking[J] Journal of Electrical Technology, 2021,36(20): 4371-4378. [4] 刘帼巾,李想,王泽,岳承浩.基于Wiener过程电子式漏电断路器的剩余寿命预测[J].电工技术学报, 2022, 37(02):528-536. Liu Aijin, Li Xiang, Wang Ze, Yue Chenghao.Residual life prediction of electronic residual current circuit breaker based on Wiener process[J]. Journal of Electrotechnical Technology, 2022, 37(02): 528-536. [5] 唐昭晖,许志红.基于响应面法的交流接触器弹簧系统优化设计方法[J].电工技术学报, 2022, 37(02): 515-527. Tang Zhaohui, Xu Zhihong.Optimization design method of AC contactor spring system based on response surface method[J] Journal of Electrical Technology, 2022,37(02): 515-527. [6] 汤龙飞,庄剑雄,孙怀懿,许志红.电磁开关高频吸持噪声抑制策略[J].电工技术学报, 2022,37(10): 2631-2643. Tang Longfei, Zhuang Jianxiong, Sun Huaiyi, Xu Zhihong.High frequency holding noise suppression strategy of electromagnetic switch[J] Journal of Electrical Technology, 2022,37(10): 2631-2643. [7] 董恩源, 刘罡, 邹启涛,等. 长行程断路器操动用新型磁力机构[J]. 高电压技术, 2010, 036(003): 816-820. Dong Enyuan, Liu Gang, Zou Qitao, et al.A new type of magnetic mechanism for operating a long-stroke circuit breaker[J]. High Voltage Technology, 2010, 036(003):816-820. [8] 田宇、许家源、王永兴、董恩源、田可新. 配126kV单断口选相真空断路器长行程磁力机构设计及性能试验[J]. 电网技术, 2020, 44(11):9. Tian Yu, Xu Jiayuan, Wang Yongxing, Dong Enyuan, Tian Kexin.Design and performance test of long-stroke magnetic mechanism for a 126kV single-break phase-selective vacuum circuit breaker[J]. Power Grid Technology, 2020, 44(11):9. [9] J. Ro, H. Bak,H. Jung, Characteristic analysis and design of a novel lorentz force driving actuator for a molded case circuit breaker[J]. IET electr. power appl., 2015, 9(1): 1-9. [10] Wang G., Wang Y., Zhang L,et al.A Novel Model of Electromechanical Contactors for Predicting Dynamic Characteristics[J]. Energies, 2021, 14. [11] 茹晶晶, 方春恩, 瞿绪龙,等. 新型磁力操动机构EMFA的动态特性仿真研究[J]. 高压电器, 2011, 47(11):5. Ru Jingjing, Fang Chunen, Qu Xulong, et al.Simulation study on dynamic characteristics of a new type of magnetic actuating mechanism EMFA[J]. High Voltage Electrical Appliances, 2011, 47(11):5. [12] 李奎, 李晓倍, 郑淑梅,等. 基于BP神经网络的交流接触器剩余电寿命预测[J]. 电工技术学报, 2017, 32(15):8. Li Kui, Li Xiaobei, Zheng Shumei, et al.Prediction of the remaining electrical life of AC contactors based on BP neural network[J]. Journal of Electrotechnical Technology, 2017, 32(15):8. [13] 李奎, 段宇, 黄少坡,等. 基于Wiener过程的交流接触器剩余电寿命预测[J]. 中国电机工程学报, 2018, 38(13):9. Li Kui, Duan Yu, Huang Shaopo, et al.Prediction of residual electrical life of AC contactors based on Wiener process[J]. Chinese Journal of Electrical Engineering, 2018, 38(13):9. [14] 张长坤, 许志红. 基于磁链变量的宽电压智能交流接触器触头弹跳抑制策略[J]. 电工技术学报, 2018, 33(21):9. Zhang Changkun, Xu Zhihong.Contact bounce suppression strategy of wide-voltage intelligent AC contactor based on flux linkage variable[J]. Journal of Electrotechnical Technology, 2018, 33(21):9. [15] 张长坤, 许志红. 基于磁链反馈的智能交流接触器串级控制策略[J]. 中国电机工程学报, 2020(4):11. Zhang Changkun, Xu Zhihong. Cascade control strategy of intelligent AC contactor based on flux linkage feedback[J]. Chinese Journal of Electrical Engineering, 2020(4):11 [16] 翟国富, 薄凯, 周学, et al.直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22):13. Zhai Guofu, Bo Kai, Zhou Xue, et al.Overview of DC high-power relay arc research[J] Journal of Electrical Technology, 2017, 32(22): 13. [17] 翟国富,许峰,刘茂恺.基于超程时间减小速率建模的电磁继电器可靠性寿命分析方法的研究[J].电子器件,2002(03):301-304. Zhai Guofu, Xu Feng, Liu Maokai.Research on reliability life analysis method of electromagnetic relay based on modeling of over travel time reduction rate[J]. Electronics, 2002 (03): 301-304. [18] 纽春萍, 陈德桂, 李兴文,等. 交流接触器触头弹跳的仿真及影响因素[J]. 电工技术学报, 2007, 22(10):7. Niu Chunping, Chen Degui, Li Xingwen, et al.Simulation and influencing factors of contact bounce of AC contactor[J]. Journal of Electrotechnical Technology, 2007, 22(10):7. [19] Dong E, Qin T, Wang Y, et al.Experimental Research on Speed Control of Vacuum Breaker[J]. IEEE Transactions on Power Delivery, 2013, 28(4):2594-2601. [20] 刘颖异,陈德桂,袁海文,等.带电流反馈的永磁接触器动态特性仿真与分析[J].中国电机工程学报,2010,30(15):118-124. Liu Yingyi,Chen Degui,Yuan Haiwen,et al.Simulation and analysis on dynamic characteristics of permanent magnetic contactor with current feedback[J].Proceedings of the CSEE,2010,30(15):118-124(in Chinese). [21] 吴自然,舒亮,许成文,吴桂初,陈红.一种新型永磁交流接触器及其控制电路[J]. 中国电机工程学报, 2016, 36(13): 3667-3673+3387. Wu Ziran,Shu Liang,Xu Chengwen,et al. A New Permanent Magnet AC Contactor and Its Control Circuit[J]. Proceedings of the CSEE,2016,36(13):3667-3673+3387(in Chinese). [22] Wang X, Lin H, Ho S L, et al.Analysis of Dynamic Characteristics of Permanent Magnet Contactor With Sensorless Displacement Profile Control[J]. IEEE Transactions on Magnetics, 2010, 46(6):1633-1636. [23] Fang S, Liu Q, Lin H, et al.A Novel Flux Weakening Control Strategy for Permanent Magnet Actuator of Vacuum Circuit Breaker[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):1-1. [24] Wang X, Lin H, Fang S, et al.Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy[J]. Journal of Applied Physics, 2011, 109(7):313. [25] 汪先兵, 林鹤云, 房淑华,等. 无位置传感器的智能永磁接触器弱磁控制及合闸动态特性分析[J]. 中国电机工程学报, 2011, 31(18):7. Wang Xianbing, Lin Heyun, Fang Shuhua, et al.Analysis of field weakening control and closing dynamic characteristics of intelligent permanent magnet contactor without position sensor[J]. Chinese Journal of Electrical Engineering, 2011, 31(18):7. [26] 汪先兵, 林鹤云, 房淑华,等. 永磁接触器位移分段PWM控制及吸合过程动态特性分析[J]. 中国电机工程学报, 2010(3):6. Wang Xianbing, Lin Heyun, Fang Shuhua, et al.Displacement subsection PWM control of permanent magnet contactor and analysis of dynamic characteristics of pull-in process[J]. Chinese Journal of Electrical Engineering, 2010(3):6.