Abstract:A Bi-stable permanent magnet actuator (BPMA) shares the same magnetic circuit as the breaking and closing coils, and the magnetic flux generated by any coil passes through the breaking and closing air gaps. The permanent magnet automatically distributes the permanent magnetic flux according to the dynamic reluctance of the air gaps. The electromagnetic flux and permanent magnetic flux in the upper and lower air gaps always cause the moving iron core to be coupled by two opposite magnetic forces. As the motion of the moving iron core and the change of coil current, the magnetic circuit quickly saturates, and the electromagnetic flux and permanent magnetic flux interact, exacerbating the complexity of nonlinear coupling in the breaking and closing air gaps. To flexibly control the action characteristics of permanent magnet switches, it is necessary to simultaneously control the air gap flux and the magnetic force pointing to the breaking and closing positions. Therefore, this paper proposes an air gap flux decoupling control method based on finite control set-model predictive control (FCS-MPC). Decoupling control can be achieved by rapidly weakening the magnetic force pointing to the non-excited coil and rapidly increasing the magnetic force pointing to the excited coil. Firstly, according to the operating principle of BPMA, the vector magnetic force acting on the moving iron core depends on the “magnetic flux squared difference” of the breaking and closing air gaps. Therefore, only controlling this vector magnetic flux square difference in real-time can dynamically control BPMA. Secondly, a predictive model of the breaking and closing air gap magnetic flux is designed through discretization of the voltage balance equation, which can predict the magnetic flux at the next moment based on the voltage and current values collected at the current moment. Thirdly, the breaking and closing air gap magnetic flux and the mechanism drive circuit are regarded as a whole. A set of switching states is constructed through the excitation intensity analysis under different switching states. Predictive magnetic flux is obtained by traversing all switching state combinations. Finally, a decoupling control cost function is designed, the predictive magnetic flux under different switching combinations is input into the cost function, and the optimal control is selected for the next control period. In rolling optimization over multiple control periods, the breaking and closing air gap magnetic flux quickly approaches their respective reference values, achieving decoupling control. A co-simulation platform for intelligent control is designed based on LabVIEW and Multisim, and hardware testing circuits are constructed. The simulation and experimental waveforms show that this proposed scheme can effectively control the breaking and closing air gap flux. As a result, the non-excited air gap flux to zero is quickly reduced, approaching the set reference value of the excited air gap flux and effectively weakening the coupling between the air gaps. Compared with the traditional current closed-loop control scheme, the proposed control scheme reduces the energy loss during the entire action process and improves the response and action time of the core action.
[1] 程显, 袁晓东, 葛国伟, 等. 真空开关高动作稳定性的永磁操动机构控制系统[J]. 电工技术学报, 2021, 36(21): 4617-4626. Cheng Xian, Yuan Xiaodong, Ge Guowei, et al.Permanent magnet mechanism control system with high operation stability of vacuum switch[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4617-4626. [2] 李斌, 郭凤仪, 王智勇, 等. 双稳态永磁机构优化设计及智能控制器[J]. 电工技术学报, 2013, 28(10): 83-89. Li Bin, Guo Fengyi, Wang Zhiyong, et al.Bi-state PMA optimization design and intelligent controller[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 83-89. [3] 杨东文, 曾次玲, 谷丰强, 等. 配永磁机构真空断路器操动时间分散性的预测模型与影响因素研究[J]. 电力系统保护与控制, 2023, 51(5): 180-187. Yang Dongwen, Zeng Ciling, Gu Fengqiang, et al.Influencing factor and forecasting model for the time dispersion of the operating mechanism of a vacuum circuit breaker with permanent magnetic actuator[J]. Power System Protection and Control, 2023, 51(5): 180-187. [4] 谭东现, 李岩, 牟坚, 等. 动态式双稳态永磁机构的研究[J]. 高压电器, 2007, 43(3): 229-231. Tan Dongxian, Li Yan, Mou Jian, et al.Research of novel dynamic bi-static permanent magnetic actuator[J]. High Voltage Apparatus, 2007, 43(3): 229-231. [5] Wang Zhenxing, Sun Liqiong, He Sainan, et al.A permanent magnetic actuator for 126 kV vacuum circuit breakers[J]. IEEE Transactions on Magnetics, 2014, 50(3): 8200507. [6] 谭东现, 崔寒, 李岩, 等. 双稳态永磁操动机构在40.5 kV户内真空断路器上的应用[J]. 高压电器, 2005, 41(2): 110-112. Tan Dongxian, Cui Han, Li Yan, et al.Application of bi-stable permanent magnetic actuator for 40.5 kV indoor vacuum circuit breaker[J]. High Voltage Apparatus, 2005, 41(2): 110-112. [7] 朱学贵, 王毅. 为提高分闸能力的永磁操动机构的研究与设计[J]. 中国电机工程学报, 2006, 26(7): 163-167. Zhu Xuegui, Wang Yi.Research and design of permanent magnet actuator for higher opening capability[J]. Proceedings of the CSEE, 2006, 26(7): 163-167. [8] 孙丽琼, 王振兴, 何塞楠, 等. 126kV真空断路器分离磁路式永磁操动机构[J]. 电工技术学报, 2015, 30(20): 49-56. Sun Liqiong, Wang Zhenxing, He Sainan, et al.A permanent magnetic actuator with separated magnetic circuit for 126kV vacuum circuit breakers[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 49-56. [9] Jiang Jiaming, Lin Heyun, Fang Shuhua.Optimization design of a permanent magnet actuator for 126-kV vacuum circuit breaker[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 0600105. [10] 吕锦柏, 王毅, 谢将剑, 等. 基于线圈电流的永磁真空断路器控制方法[J]. 高电压技术, 2013, 39(4): 860-868. Lü Jinbo, Wang Yi, Xie Jiangjian, et al.Control method for permanent magnetic vacuum circuit breaker based on coil current[J]. High Voltage Engineering, 2013, 39(4): 860-868. [11] Fang Shuhua, Liu Qingdong, Lin Heyun, et al.A novel flux-weakening control strategy for permanent-magnet actuator of vacuum circuit breaker[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2275-2283. [12] Dong Enyuan, Qin Taotao, Wang Yongxing, et al.Experimental research on speed control of vacuum breaker[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2594-2601. [13] 肖蕙蕙, 魏苏东, 郭强, 等. 优化开关序列的PWM整流器模型预测控制策略[J]. 电工技术学报, 2022, 37(14): 3665-3675, 3700. Xiao Huihui, Wei Sudong, Guo Qiang, et al.Model predictive control strategy for PWM rectifier with optimized switching sequence[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3665-3675, 3700. [14] 张树林, 康劲松, 盛业哲. 一种无权重系数的三电平NPC逆变器低共模电压FCS-MPC算法[J]. 中国电机工程学报, 2023, 43(19): 7614-7625. Zhang Shulin, Kang Jinsong, Sheng Yezhe.A low common mode voltage FCS-MPC scheme for three-level NPC inverter without weighting factor[J]. Proceedings of the CSEE, 2023, 43(19): 7614-7625. [15] 张珍睿, 刘彦呈, 陈九霖, 等. 永磁同步电机幅值控制集模型预测控制策略[J]. 电工技术学报, 2022, 37(23): 6126-6134. Zhang Zhenrui, Liu Yancheng, Chen Jiulin, et al.Amplitude control set model predictive control strategy for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6126-6134. [16] 陈卓易, 屈稳太, 邱建琪. 一种开关频率可控的有限集模型预测控制[J]. 电工技术学报, 2022, 37(16): 4134-4142. Chen Zhuoyi, Qu Wentai, Qiu Jianqi.A switching-frequency-controlled finite-control-set model predictive control method[J]. Transactions of China Electro-technical Society, 2022, 37(16): 4134-4142. [17] 宋琳, 聂子玲, 叶伟伟, 等. 基于前馈解耦控制的有源中点钳位五电平模型预测控制[J]. 电工技术学报, 2023, 38(7): 1910-1920. Song Lin, Nie Ziling, Ye Weiwei, et al.Research on model predictive control of ANPC-5L permanent magnet synchronous motor based on feedforward decoupling[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1910-1920. [18] 颜黎明, 郭鑫, 徐玺声, 等. 基于新型解析权重因子配置的感应电机模型预测转矩控制[J]. 电工技术学报, 2023, 38(20): 5421-5433. Yan Liming, Guo Xin, Xu Xisheng, et al.Model predictive torque control of induction machine drives using novel analytic weighting factor assignment[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5421-5433. [19] 柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22): 58-69. Liu Zhifei, Du Guiping, Du Fada.Research status and development trend of finite control set model predictive control in power electronics[J]. Transa-ctions of China Electrotechnical Society, 2017, 32(22): 58-69. [20] Kouro S, Cortes P, Vargas R, et al.Model predictive control-a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [21] Tang Longfei, Luan Shixu.Cosimulation of bistable permanent magnet circuit breakers[J]. IEEE Transa-ctions on Industrial Electronics, 2024, 71(3): 2800-2809.