A Theoretical Study on the Electrochemical Performance of Two-Dimensional Mo-Based Double Transition Metal Carbide as Anode Material for Lithium-Ion-Batteries
Wang Hangyu, Liu Haoliang, Cheng Yonghong, Xiao Bing
State Key Laboratory of Electrical Insulation and Power Equipment School of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China
Abstract:As a new type of two-dimensional (2D) material, two-dimensional Mo-based double transition metal carbide or nitride (MXenes) has received extensive attentions because of its simple preparation process, flexible and controllable physical and chemical properties, and high structural stability. However, most studies have focused on the performance of mono-transition metal MXenes. The effect of double transition metal combinations and its surface modifications on electrochemical performances of MXenes have not been systematically reported. Therefore, in this study, the first-principles calculation method based on density functional theory was used to systematically evaluate the electrochemical performance of 35 Mo-based ordered double transition metal MXenes, including intrinsic structures Mo2MC2 (M=Sc, Ti, V, Zr, Nb, Hf, Ta) and the corresponding four types of surface functionalized structures Mo2MC2T2 (T=H, O, F, OH). The calculation results show that different modification groups on the surface of the MXenes play a decisive role in both the adsorption of Li atom on the surface and the diffusion ability of lithium atoms. The theoretical capacity is in the range of 121~195mA·h/g, and the ideal OCV (0.5~0.8V) can be obtained by intrinsic and H-modified structures. At the same time, the extremely low ion diffusion barrier (0.03~0.06eV) of the intrinsic structures could greatly improve the charging or discharging rate of lithium ion batteries.
王航宇, 刘浩良, 成永红, 肖冰. 二维钼基双过渡金属碳化物作为锂离子电池阳极材料的电化学性能研究[J]. 电工技术学报, 2021, 36(zk2): 438-443.
Wang Hangyu, Liu Haoliang, Cheng Yonghong, Xiao Bing. A Theoretical Study on the Electrochemical Performance of Two-Dimensional Mo-Based Double Transition Metal Carbide as Anode Material for Lithium-Ion-Batteries. Transactions of China Electrotechnical Society, 2021, 36(zk2): 438-443.
[1] Li M, Lu Jun, Chen Zhongwei, et al.30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. [2] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different dnterval dtress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. [3] Cai Wenlong, Yao Yuxing, Zhu Gaolong, et al.A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. [4] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2065-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Per-formance correlation and temperature applicability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2065-2073. [5] 庞思远, 刘希喆. 石墨烯在电气领域的研究与应用综述[J]. 电工技术学报, 2018, 33(8): 1705-1722. Pang Siyuan, Liu Xizhe.Review on research and application of graphene in electrical field[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1705-1722. [6] Pang Jinbo, Mendes R, Bachmatiuk A, et al.Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(72): 72-133. [7] Ng V M H, Huang Hui, Zhou Kun, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications[J]. Journal of Materials Chemistry A, 2017, 5(7): 3039-3068. [8] 郑伟, 孙正明, 张培根, 等. 二维纳米材料MXene的研究进展[J]. 材料导报, 2017, 31(5): 1-14. Zheng Wei, Sun Zhengming, Zhang Peigen, et al.Research progress on MXene, two dimensional nano-materials[J]. Materials Review, 2017, 31(5): 1-14. [9] Anasori B, Xie Yu, Beidaghi M, et al.Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano, 2015, 9(10): 9507-9516. [10] Khazaei M, Ranjbar A, Arai M, et al.Electronic-properties and applications of MXenes: a theoretical review[J]. Journal of Materials Chemistry C, 2017, 5(10): 2488-2503. [11] Kresse G, Furthmuller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [12] Sun Jianwei, Ruzsinszky A, Perdew J.Strongly con-strained and appropriately normed semilocal density functional[J]. Physical Review Letters, 2015, 115(3): 036402. [13] Er D, Li Junwen, Naguib M, et al.Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Material Interfaces. 2014, 6(14): 11173-11179. [14] Akkuş Ü, Balci E, Berber S.Mo2TiC2O2 Mxene-based nanoscale pressure sensor[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116: 113762. [15] Si Chen, Jin K, Zhou Jian, et al.Large-gap quantum spin hall state in MXenes: d-band topological order in a triangular lattice[J]. Nano Letters, 2016, 16(10): 6584-6591. [16] Li Yameng, Chen Wangao, Guo Yongliang, et al.Theoretical investigations of TiNbC MXenes as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2019, 778(25): 53-60. [17] Tang Qing, Zhou Zhen, Shen Panwen.Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. [18] Greaves M, Barg S, Bissett M.Mxene-based anodes for metal-ion batteries[J]. Batteries Supercaps, 2020, 3(3): 214-235. [19] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988. Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988. [20] Zhao Shijun, Kang Wei, Xue Jianming.Role of strain and concentration on the Li adsorption and diffusion properties on Ti2C layer[J]. Journal of Physical Chemistry C, 2014, 118(27): 14983-14990. [21] Zhu Jiajie, Chroneos A, Schwingenschlogl U.Nb-based MXenes for Li-ion battery applications[J]. Physica Status Solidi-Rapid Research Letters, 2015, 9(12): 726-729. [22] Hao Jiongyue, Zheng Junfeng, Ling Faling, et al.Strain-engineered two-dimensional MoS2 as anode material for performance enhancement of Li/Na-ion batteries[J]. Scientific Reports, 2018, 8: 2079. [23] Toyoura K, Koyama Y, Kuwabara A, et al.Effects of off-stoichiometry of LiC6 on the lithium diffusion mechanism and diffusivity by first principles calculations[J]. Journal of Physical Chemistry C, 2010, 114(5): 2375-2379.