A Double-C High-Temperature Superconducting DC Induction Heater and Analysis of Its Performance
Zhang Wenfeng1, Jiang Yongjiang1, Zhang Xiaohong2, Li Jie3
1. College of Automation & College of Artificial Intelligence Nanjing University of Posts and Telecommunications Nanjing 210023 China; 2. State Grid Anhui Electric Power Company Bengbu Power Supply Company Bengbu 230061 China; 3. State Grid Beijing Electric Power Company Beijing 100031 China
Abstract:The superconducting induction heating device can be used to heat the rotating metal workpieces in its DC magnetic field. It has higher efficiency than traditional AC induction heating device and has a greater market competitive advantage. In this paper, a double C-type device is proposed based on the existing heating device, which greatly reduces the use of ferromagnetic materials. By studying the influence of air gap magnetic field distribution on the eddy current loss, a method based on arc air gap is proposed to improve the heating efficiency. An equivalent model is established to analyze the starting torque of the DC induction heating device, and the variation rules of the starting torque with the rotation speed and the workpiece radius are obtained. According to the special structure of the double coils and double iron cores of the device, a variable air gap method is adopted to solve the problem of excessive starting torque in the heating process. The relevant research conclusions can provide a reference for the design of superconducting DC induction heating device with iron-cores.
张文峰, 姜永将, 张晓红, 李捷. 一种双C型高温超导直流感应加热装置及其性能分析[J]. 电工技术学报, 2021, 36(zk2): 444-450.
Zhang Wenfeng, Jiang Yongjiang, Zhang Xiaohong, Li Jie. A Double-C High-Temperature Superconducting DC Induction Heater and Analysis of Its Performance. Transactions of China Electrotechnical Society, 2021, 36(zk2): 444-450.
[1] 金之俭, 洪智勇, 赵跃, 等. 二代高温超导材料的应用技术与发展综述[J]. 上海交通大学学报, 2018, 52(10): 1155-1165. Jin Zhijian, Hong Zhiyong, Zhao Yue, et al.Review of technology and development in the power applications based on second generation high tem-perature superconductors[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1155-1165. [2] 郭文勇, 蔡富裕, 赵闯, 等. 超导储能技术在可再生能源中的应用与展望[J]. 电力系统自动化, 2019, 43(8): 2-19. Guo Wenyong, Cai Fuyu, Zhao Chuang, et al.Application and prospect of superconducting magnetic energy storage for renewable energy[J]. Automation of Electric Power Systems, 2019, 43(8): 2-19. [3] 汪友华, 吴建成, 李宾, 等. 新型带材横向磁通感应加热器设计与相关励磁参数优选[J]. 电工技术学报, 2020, 35(4): 745-757. Wang Youhua, Wu Jiancheng, Li Bin, et al.Design and optimization of relative excitation parameters for a new strip transverse flux induction heating apparatus[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 745-757. [4] Yang Ping, Wang Yawei, Qiu Derong, et al.Design and fabrication of a 1MW high-temperature super-conductor DC induction heater[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 3700305. [5] Jongho Choi, Kwangmin Kim, Minwon Park, et al.Practical design and operating characteristic analysis of a 10kW HTS DC induction heating machine[J]. Physica C-Superconductivity and Its Applications, 2014, 504: 120-126. [6] Runde M, Magnusson N. Induction heating of aluminium billets using superconducting coils[J]. Physica C-Superconductivity and Its Applications, 2002, 372-376: 1339-1341. [7] Techmetal Promotion.Progress and devices for the induction heating of a moving elongate matallurgical product: France, WO9117644A1[P]. 1991. [8] TRITHOR GMBH.Induction heator: Germany, DE202007014930U1[P]. 2007. [9] Van Quan Dao, Chang-Soon Kim, Chankyeong Lee, et al.Design and comparison analysis of 3T superconducting magnets using MgB2 and 2G HTS wires for DC induction heaters[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 4901205. [10] Jongho Choi, Taegyu Kim, Chang-Kyeong Lee, et al.Commercial design and operating characteristics of a 300kW superconducting induction heater (SIH) based on HTS magnets[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 3700105. [11] Zhang Dong, Xiao Liye, Song Naihao, et al.Research on the conduction-cooled YBCO magnet for an MW class induction heating system[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 4602305. [12] 程明, 文宏辉, 曾煜, 等. 电机气隙磁场调制行为及其转矩分析[J]. 电工技术学报, 2020, 35(5): 921-930. Cheng Ming, Wen Honghui, Zeng Yu, et al.Analysis of airgap field modulation behavior and torque component in electric machines[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 921-930. [13] 刘家琦, 白金刚, 郑萍, 等. 基于磁场调制原理的齿槽转矩研究[J]. 电工技术学报, 2020, 35(5): 931-941. Liu Jiaqi, Bai Jingang, Zheng Ping, et al.Investigation of cogging torque based on magnetic field modulation principle[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 931-941. [14] Yang Ping, Wang Yawei, Chang Tongxu, et al.Start-up strategy using flywheel energy storage for superconducting DC induction heater[J]. COMPEL-the International Journal for Computation and Mathe-matics in Electrical and Electronic Engineering, 2017, 36(4): 1298-1309. [15] 刘骥, 张明泽, 廖俐琳, 等. 铜包铝高频线圈损耗的理论计算方法[J]. 电工技术学报, 2018, 33(14): 3160-3169. Liu Ji, Zhang Mingze, Liao Lilin, et al.Theoretical calculation on high-frequency loss of copper clad aluminum coil[J]. Transactions of China Electro-technical Society, 2018, 33(14): 3160-3169. [16] 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(增刊1): 10-18. Li Wanjie, Zhang Guomin, Wang Xinwen, et al.Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. [17] Zhang Wenfeng, Xia Dong, Zhang Dong.Behavior analysis of the nonuniform damping and screening system in the HTS generator[J]. IEEE Transactions on Magnetics, 2015, 51(11): 8205604. [18] 梁艳萍, 李伟, 王泽宇, 等. 高速感应电机转子涡流损耗的计算方法及影响因素[J]. 电机与控制学报, 2019, 23(5): 42-50. Liang Yanping, Li Wei, Wang Zeyu, et al.Calcu-lation method and effect factors of eddy current losses in rotor of high speed induction motor[J]. Electric Machines and Control, 2019, 23(5): 42-50. [19] 上海超导科技股份有限公司. 基于减速箱的超导直流感应加热电机启动装置及方法: 中国, CN103916055B[P]. 2014. [20] 杨平. 兆瓦级高温超导直流感应加热装置的关键技术研究[D]. 上海: 上海交通大学, 2017.