Abstract:Fusion analysis of heterogeneous multi-parameter data generated by multi-source power sensing terminals is the key to effective power target sensing under the power Internet of Things. At present, however, multi-parameter fusion in power system is still dominated by homogeneous multi-parameter fusion and decision-level heterogeneous multi-parameter fusion, which can no longer meet the needs of deep fusion for heterogeneous multi-parameter under the power Internet of Things. To solve this problem, this paper proposes a universal fusion framework suitable for structured multiple time series and unstructured images, which can be used for descriptive, predictive or decision-making analysis of power things. Firstly, with the consideration of time and space characteristics, the time series are converted into a recurrence plot suitable for nonlinear chaotic systems, so that the time series and images have the same description space. Then convolutional neural networks are used to extract the features, following with weighted feature concatenate fusion, fully connection and target perception. Finally, taking transmission line icing level perception and insulator contamination degree perception as scenarios, the model is analyzed from the perspective of accuracy and fault tolerance, which verifies the universality of the proposed model.
[1] 刘长杰. 数据中台建设将把数字中国推向纵深—与国务院发展研究中心研究员李广乾对话[J]. 中国发展观察, 2020(增刊1): 86-90. Liu Changjie.The construction of the data center will push the digital China to a deeper level-dialogue with Li Guangqian, a researcher at the Development Research Center of the State Council[J]. China Development Observation, 2020(S1): 86-90. [2] 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43(5): 1575-1585. Wang Yi, Chen Qixin, Zhang Ning, et al.Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects[J]. Power System Technology, 2019, 43(5): 1575-1585. [3] 袁立明. 院士李立浧: 中国需要“透明电网”[J]. 地球, 2018(11): 40-41. Yuan Liming.Academician Li Licheng: China needs a "transparent power grid"[J]. The Earth, 2018(11): 40-41. [4] 葛磊蛟, 王守相, 王尧, 等. 多源异构的智能配用电数据存储处理技术[J]. 电工技术学报, 2015, 30(增刊2): 159-168. Ge Leijiao, Wang Shouxiang, WangYao, et al. Storage and processing technology of the multi-source isomerized data for smart power distribution and utilization[J]. Transactions of China Electrotechnical Society , 2015, 30(S2): 159-168. [5] Bedi G, Venayagamoorthy G K, Singh R, et al.Review of internet of things (IoT) in electric power and energy systems[J]. IEEE Internet of Things Journal, 2018, 5(2): 847-870. [6] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2010. [7] Fusco F, Tirupathi S, Gormally R.Power systems data fusion based on belief propagation[C]// 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, 2017, DOI: 10.1109/ISGTEurope.2017.8260301. [8] 魏大千, 王波, 刘涤尘, 等. 基于时序数据相关性挖掘的WAMS/SCADA数据融合方法[J]. 高电压技术, 2016, 42(1): 315-320. Wei Daqian, Wang Bo, Liu Dichen, et al.WAMS/SCADA data fusion method based on time-series data correlation mining[J]. High Voltage Engineering, 2016, 42(1): 315-320. [9] 符玲. 基于信息测度的电力系统故障识别方法研究[D]. 成都: 西南交通大学, 2010. [10] 朱建全, 李颖, 谭伟. 基于特性融合的电力负荷建模[J]. 电网技术, 2015, 39(5): 1358-1364. Zhu Jianquan, Li Ying, Tan Wei.Characteristic fusion based on electric load modeling[J]. Power System Technology, 2015, 39(5): 1358-1364. [11] 甘伟焜. 基于红外图像的变压器图像处理方法研究[D]. 广州: 华南理工大学, 2017. [12] Jiao Zaibin, Wu Rundong.A new method to improve fault location accuracy in transmission line based on fuzzy multi-sensor data fusion[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4211-4220. [13] 孙曙光, 王锐雄, 杜太行, 等. 基于粗糙集与证据理论的交流接触器预期电寿命预测[J]. 电工技术学报, 2020, 35(10): 2158-2169. Sun Shuguang, Wang Ruixiong, Du Taihang, et al.Expected electrical life prediction of AC contactor based on rough set and evidence theory[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2158-2169. [14] 吴润泽, 陈文伟, 邹英杰, 等. 基于多因素融合的电网高风险设备评估方法[J]. 电力系统保护与控制, 2018, 46(2): 1-7. Wu Runze, Chen Wenwei, Zou Yingjie, et al.Evaluation method of high risk equipment in power grid based on multiple factor fusion[J]. Power System Protection and Control , 2018, 46(2): 1-7. [15] 侯慧, 于士文, 肖祥, 等. 基于空间多源异构数据的台风下输电杆塔风险评估[J]. 电力系统自动化, 2020, 44(10): 127-137. Hou Hui, Yu Shiwen, Xiao Xiang, et al.Risk assessment of transmission tower in Typhoon based on spatial multi-source heterogeneous data[J]. Automation of Electric Power Systems, 2020, 44(10): 127-137. [16] 蒋逸雯, 彭明洋, 马凯, 等. 多源异构数据融合的电力变压器状态评价方法[J]. 广东电力, 2019, 32(9): 137-145. Jiang Yiwen, Peng Mingxiang, Ma Kai, et al.Evaluation method for power trannsformer conditions based on multi-source heterogeneous data fusion[J]. Guangdong Electric Power, 2019, 32(9): 137-145. [17] 王红霞, 王波, 陈红坤, 等. 电力数据融合: 基本概念、抽象化结构、关键技术和应用场景[J]. 供用电, 2020, 37(4): 24-32. Wang Hongxia, Wang Bo, Chen Hongkun, et al.Power data fusion: basic concepts, abstract structures, key technologies and application scenarios[J]. Distribution & Utilization, 2020, 37(4): 24-32. [18] Eckmann J P, Kamphorst S O, Ruelle D.Recurrence plots of dynamical systems[J]. Europhysics Letters (EPL), 1987, 4(9): 973-977. [19] 侯俊博. 基于递归图的脑电信号非线性动力学研究[D]. 秦皇岛: 燕山大学, 2018. [20] Wang Bin, Sun Kai, Xu Xin.Nonlinear modal decoupling based power system transient stability analysis[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4889-4899. [21] 胡茗, 杨晓辉, 王毅. 基于鲁棒反演滑模法的电力系统混沌控制[J]. 电测与仪表, 2019, 56(3): 129-132, 138. Hu Ming, Yang Xiaohui, Wang Yi.A chaos control in power system based on robust back-stepping sliding method[J]. Electrical Measurement & Instrumentation, 2019, 56(3): 129-132, 138. [22] Chen Yun, Yang Hui.Self-organized neural network for the quality control of 12-lead ECG signals[J]. Physiological Measurement, 2012, 33(9): 1399-1418. [23] Ren Shaoqing, He Kaiming, Girshick Ross, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6): 1137-1149. [24] 虢韬, 杨恒, 时磊, 等. 基于Faster RCNN的绝缘子自爆缺陷识别[J]. 电瓷避雷器, 2019 (3): 183-189. Guo Tao, Yang Heng, Shi Lei, et al.Self-explosion defect identification of insulator based on Faster RCNN[J]. Insulators and Surge Arresters, 2019 (3): 183-189. [25] 蒋兴良, 侯乐东, 韩兴波, 等. 输电线路导线覆冰扭转特性的数值模拟[J]. 电工技术学报, 2020, 35(8): 1818-1826. Jiang Xingliang, Hou Ledong, Han Xingbo, et al.Numerical Simulation of torsion characteristics of transmission line conductor[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1818-1826. [26] 何青, 李军辉, 邓梦妍, 等. 架空输电导线覆冰冻结系数计算及其影响因素分析[J]. 电工技术学报, 2019, 34(19): 4162-4169. He Qing, Li Junhui, Deng Mengyan, et al.Calculation and influencing factors of icing freezing coefficient of overhead transmission line[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4162-4169. [27] 林刚, 王波, 彭辉, 等. 基于强泛化卷积神经网络的输电线路图像覆冰厚度辨识[J]. 中国电机工程学报, 2018, 38(11): 3393-3401. Lin Gang, Wang Bo, Peng Hui, et al.Identification of icing thickness of transmission line based on strongly generalized convolutional neural network[J]. Proceeding of the CSEE, 2018, 38(11): 3393-3401. [28] Liu Lishuai, Mei Hongwei, Guo Chenjun, et al.Pixel-level classification of pollution severity on insulators using photothermal radiometry and multi-class semi-supervised support vector machine[J]. IEEE Transactions on Industrial Informatics, 2021, 17(1): 441-449. [29] 焦尚彬, 刘丁, 郑岗, 等. 基于模糊逻辑方法的高压绝缘子污秽程度评定[J]. 电力系统自动化, 2005, 29(7): 84-87, 107. Jiao Shangbin, Liu Ding, Zheng Gang, et al.Assessment of surface contamination condition of high voltage insulator based on fuzzy logic method[J]. Automation of Electric Power Systems, 2005, 29(7): 84-87, 107. [30] 姜昀芃, 李黎, 卢明, 等. 瓷绝缘子表面粘附颗粒的粒径分布特性及其影响因素研究[J]. 电工技术学报, 2019, 34(3): 611-619. Jiang Yunpeng, Li Li, Lu Ming, et al.Study on particle diameter distribution characteristics and influence factors of adhered particles on the porcelain insulator surface[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 611-619.