Applications of Piezoelectric Materials and Devices in Electric Engineering
Yao Ruifeng1, Wang Yan2, Gao Jinghui1, Chen Chuan2, Guo Jinghong2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. Department of Electric Power Sensing Technology Global Energy Interconnection Research Institute Co. Ltd Beijing 102209 China
Abstract:With the long-term development of energy revolution and energy internet, the demand for automatic, intelligent and information-based power grid has been more and more urgent. It is required to provide information for multi-scene application of power grid based on the advanced sensing technology, so as to keep smart grid safe and reliable under complex working conditions. Piezoelectric materials, as the key materials to measure the discharge and vibration signals, have been widely used in the aspects of measuring vibration, discharge, defects, temperature, voltage and other properties of power equipment. In this paper, the development of typical piezoelectric sensing materials, as well as the applications of piezoelectric vibration sensors, sonic sensors and voltage sensors have been reviewed. Furthermore, the situation that there still existed problems like low accuracy, poor stability and weak environmental adaptability for current piezoelectric sensors is pointed out, which requires new-generation smart piezoelectric sensors by means of rapid development of piezoelectric materials with high properties, structure design of sensors and intelligent compensation.
姚睿丰, 王妍, 高景晖, 陈川, 郭经红. 压电材料与器件在电气工程领域的应用[J]. 电工技术学报, 2021, 36(7): 1324-1337.
Yao Ruifeng, Wang Yan, Gao Jinghui, Chen Chuan, Guo Jinghong. Applications of Piezoelectric Materials and Devices in Electric Engineering. Transactions of China Electrotechnical Society, 2021, 36(7): 1324-1337.
[1] 赵海, 蔡巍, 王进法, 等. 能源互联网架构设计与拓扑模型[J]. 电工技术学报, 2015, 30(11): 30-36. Zhao Hai, Cai Wei, Wang Jinfa, et al.An architecture design and topological model of inter grid[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 30-36. [2] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14): 3482-3494. Tian Shiming, Luan Wenpeng, Zhang Dongxia, et al.Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14): 3482-3494. [3] 林川, 赵海, 刘晓, 等. 能源互联网路由策略研究[J]. 电工技术学报, 2015, 30(11): 37-44. Lin Chuan, Zhao Hai, Liu Xiao, et al.Research on routing strategy for inter grid[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 37-44. [4] 肖祥武, 王丰, 王晓辉, 等. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统[J]. 电工技术学报, 2020, 35(23): 4898-4911. Xiao Xiangwu, Wang Feng, Wang Xiaohui, et al.Bionic structure and cyber-Physical system for intelligent power plant oriented to the industrial internet[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4898-4911. [5] 赵仕策, 赵洪山, 寿佩瑶. 智能电力设备关键技术及运维探讨[J]. 电力系统自动化, 2020, 44(20): 1-10. Zhao Shice, Zhao Hongshan, Shou Peiyao.Discussion on key technology and operation & maintenance of intelligent power equipment[J]. Automation of Electric Power Systems, 2020, 44(20): 1-10. [6] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE 电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [7] 孙曙光, 李勤, 杜太行, 等. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573. Sun Shuguang, Li Qin, Du Taihang, et al.Fault diagnosis of accessories for the low voltage conventional circuit breaker based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2562-2573. [8] Ardito R, Corigliano A, Gafforelli G, et al.Advanced model for fast assessment of piezoelectric micro energy harvesters[J]. Frontiers in Materials, 2016, 3: 17. [9] Von Hippel A, Breckenridge R G, Chesley F G, et al.High dielectric constant ceramics[J]. Industrial & Engineering Chemistry, 1946, 38(11): 1097-1109. [10] Choi S W, Shrout R T R, Jang S J, et al. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1989, 100(1): 29-38. [11] Liu Wenfeng, Ren Xiaobing.Large piezoelectric effect in Pb-free ceramics[J]. Physical Review Letters, 2009, 103(25): 257602. [12] Li Fei, Lin Dabin, Chen Zibin, et al.Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354. [13] He Yuting, Yan Wenbo, Liu Yongbin, et al.Searching high dielectric permittivity in barium titanate based material by machine learning prediction[C]//2018 12th International Conference on the Properties and Applications of Dielectric Materials, Xi'an, 2018: 983-986. [14] Gao Jinghui, Liu Yongbin, Wang Yan, et al.Designing high dielectric permittivity material in barium titanate[J]. The Journal of Physical Chemistry C, 2017, 121(24): 13106-13113. [15] 刘泳斌, 高景晖, 闫文博, 等. 机器学习在储能陶瓷 Ba(Ti1-xHfx)O3介电常数寻优中的应用[J]. 高电压技术, 2017, 43(7): 2229-2233. Liu Yongbin, Gao Jinghui, Yan Wenbo, et al.Application of machine learning in optimization of high-permittivity energy-storage Ba(Ti1-xHfx)O3 ceramic[J]. High Voltage Engineering, 2017, 43(7): 2229-2233. [16] Xue D Z, Balachandran P V, Hogden J, et al.Accelerated search for materials with targeted properties by adaptive design[J]. Nature Communi-cations, 2016, 7(1): 1-9. [17] Yuan Ruihao, Liu Zhen, Balachandran P V, et al.Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning[J]. Advanced Materials, 2018, 30(7): 1702884. [18] Balachandran P V, Xue Dezhen, Theiler J, et al.Adaptive strategies for materials design using uncertainties[J]. Scientific Reports, 2016, 6(1): 1-9. [19] Venkatragavaraj E, Satish B, Vinod P R, et al.Piezoelectric properties of ferroelectric PZT-polymer composites[J]. Journal of Physics D: Applied Physics, 2001, 34(4): 487. [20] Li Mengyuan, Stingelin N, Michels J J, et al.Ferroelectric phase diagram of PVDF: PMMA[J]. Macromolecules, 2012, 45(18): 7477-7485. [21] Chen Xiaodong, Yang Daben, Jiang Yadong, et al.0-3 piezoelectric composite film with high d33 coefficient[J]. Sensors and Actuators A: Physical, 1998, 65(2-3): 194-196. [22] Meng Nan, Ren Xintong, Santagiuliana G, et al.Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors[J]. Nature Communications, 2019, 10(1): 1-9. [23] 孟永鹏, 钟波, 贾申利. 振动分析在电力设备状态检测中的应用和发展[J]. 高压电器, 2005, 41(6): 461-465. Meng Yongpeng, Zhong Bo, Jia Shenli.Application and development of the vibration anaiysis in the condition monitoring of electrical equipment[J]. High Voltage Apparatus, 2005, 41(6): 461-465. [24] 石维, 朱建国, 肖定全, 等. 基于BGSPT压电陶瓷的高温加速度传感器[J]. 压电与声光, 2013, 35(4): 549-551. Shi Wei, Zhu Jianguo, Xiao Dingquan, et al.A high temperature piezoelectric accelerator based on BGSPT ceramics[J]. Piezoelectrics & Acoustooptics, 2013, 35(4): 549-551. [25] 黄新波, 潘高峰, 司伟杰, 等. 基于压电式加速度计的导线微风振动传感器设计[J]. 高压电器, 2017, 53(4): 92-99. Huang Xinbo, Pan Gaofeng, Si Weijie, et al.Design of traverse breeze vibration sensor based on the piezoelectric accelerometer[J]. High Voltage Apparatus, 2017, 53(4): 92-99. [26] 李国辉. 输电塔状态监测系统研究与设计[D]. 淮南: 安徽理工大学, 2018. [27] 闫铭, 万舟. 基于PVDF 压电传感器的高压输电塔健康监测研究[J]. 工业仪表与自动化装置, 2017(1): 79-82. Yan Ming, Wan Zhou.Research on health monitoring of high-voltage power transmission tower based on PVDE piezoelectric sensor[J]. Industrial Instrumen-tation & Automation, 2017(1): 79-82. [28] Wang Tao, Liu Shaopeng, Shao Junhua, et al.Health monitoring of bolted joints using the time reversal method and piezoelectric transducers[J]. Smart Materials and Structures, 2016, 25(2): 025010. [29] Shao Junhua, Wang Tao, Yin Heyue, et al.Bolt looseness detection based on piezoelectric impedance frequency shift[J]. Applied Sciences, 2016, 6(10): 298. [30] 邵俊华, 王涛, 汪正傲, 等. 基于压电阻抗频率变化的螺栓松动检测技术[J]. 中国机械工程, 2019, 30(12): 1395-1399. Shao Junhua, Wang Tao, Wang Zhengao, et al.Bolt looseness detection using piezoelectric impedance frequency shift method[J]. China Mechanical Engineering, 2019, 30(12): 1395-1399. [31] 夏伟强, 马铁华, 范锦彪, 等. 压电式加速度传感器在高冲击环境下的零漂分析[J]. 传感技术学报, 2007, 20(7): 1522-1527. Xia Weiqiang, Ma Tiehua, Fan Jinbiao, et al.Analysis of zero-drift of the piezoelectric acceleration sensor in high-impact testing[J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1522-1527. [32] Gao Xiangyu, Wu Jingen, Yu Yang, et al.Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting[J]. Advanced Functional Materials, 2018, 28(30): 1706895. [33] Han Ruihua, Wang Jianyan, Xu Mahui, et al.Design of a tri-axial micro piezoelectric accelerometer[C]// 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Xi'an, 2016: 66-70. [34] 闫震, 何青. 激励环境下悬臂梁式压电振动发电机性能分析[J]. 中国电机工程学报, 2011, 31(30): 140-145. Yan Zhen, He Qing.Performance analysis on incentive environment of micro cantilever piezoelectric vibration generator[J]. Proceedings of the CSEE, 2011, 31(30): 140-145. [35] Wu Jingen, Shi Huaduo, Zhao Tianlong, et al.High-temperature BiScO3-PbTiO3 piezoelectric vibration energy harvester[J]. Advanced Functional Materials, 2016, 26(39): 7186-7194. [36] Leland E S, Wright P K, White R M.A MEMS AC current sensor for residential and commercial electricity end-use monitoring[J]. Journal of Micromechanics and Microengineering, 2009, 19(9): 094018. [37] Wang Dong F, Suzuki Y, Suwa Y, et al.Integrated piezoelectric direct current sensor with actuating and sensing elements applicable to two-wire DC appliances[J]. Measurement Science and Technology, 2013, 24(12): 125109. [38] Wang Dong F, Isagawa K, Kobayashi T, et al.Passive piezoelectric DC sensor applicable to one-wire or two-wire DC electric appliances for end-use monitoring of DC power supply[J]. Microsystem Technologies, 2012, 18(11): 1897-1902. [39] Wang Dong F, Isagawa K, Kobayashi T, et al.Developing passive piezoelectric MEMS sensor applicable to two-wire DC appliances with current switching[J]. Micro & Nano Letters, 2012, 7(1): 68-71. [40] 吴茂鹏, 陈希有, 齐琛, 等. 电声电型非电气接触式全桥模块门极隔离电源研究[J]. 电工技术学报, 2020, 35(4): 687-697. Wu Maopeng, Chen Xiyou, Qi Chen, et al.The study of full bridge module gate driver supplies based on acoustic-electric-acoustic type contactless power transfer[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 687-697. [41] 翟国富, 梁宝, 贾文斌, 等. 横波电磁超声相控阵换能器设计[J]. 电工技术学报, 2019, 34(7): 1441-1448. Zhai Guofu, Liang Bao, Jia Wenbin, et al.Design of the shear wave electromagnetic ultrasonic phased array transducer[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1441-1448. [42] 黎大健, 梁基重, 步科伟, 等. GIS 中典型缺陷局部放电的超声波检测[J]. 高压电器, 2009, 45(1): 72-75. Li Dajian, Liang Jizhong, Bu Kewei, et al.Ultrasonic detection of partial discharge on typical defects in GIS[J]. High Voltage Apparatus, 2009, 45(1): 72-75. [43] 李继胜, 李军浩, 罗勇芬, 等. 用于电力变压器局部放电定位的超声波相控阵传感器的研制[J]. 西安交通大学学报, 2011, 45(4): 93-99. Li Jisheng, Li Junhao, Luo Yongfen, et al.Study of phased-ultrasonic receiving-planar array transducer for partial discharge location in power transformer[J]. Journal of Xi'an Jiaotong University, 2011, 45(4): 93-99. [44] 朱太云, 杨道文, 叶剑涛, 等. 基于主动激励的GIS 盆式绝缘子损伤检测[J]. 天津理工大学学报, 2017, 33(1): 39-43. Zhu Taiyun, Yang Daowen, Ye Jiantao, et al.GIS basin insulator damage detection based active motivation[J]. Journal of Tianjin University of Technology, 2017, 33(1): 39-43. [45] 邓红雷, 鲁强, 陈力, 等. 基于超声导波的复合绝缘子检测[J]. 高电压技术, 2016, 42(4): 1236-1244. Deng Honglei, Lu Qiang, Chen Li, et al.Detection for composite insulator based on ultrasonic guided wave[J]. High Voltage Engineering, 2016, 42(4): 1236-1244. [46] 王黎明, 李昂, 成立. 复合绝缘子微波无损检测方法的关键因素研究[J]. 高电压技术, 2017, 43(1): 203-209. Wang Liming, Li Ang, Cheng Li.Key factors of microwave non-destructive testing on composite insulators[J]. High Voltage Engineering, 2017, 43(1): 203-209. [47] 马君鹏, 孙兴涛, 李硕, 等. 基于超声导波的盆式绝缘子缺陷检测及定位[J]. 高电压技术, 2019, 45(12): 3941-3948. Ma JunPeng, Sun Xingtao, Li Shuo, et al. Detection and location for defects of basin-type insulator based on ultrasonic guided[J]. High Voltage Engineering, 2019, 45(12): 3941-3948. [48] 刘云柱. 输电线杆塔拉线棒缺陷超声导波检测方法研究[D]. 北京: 北京工业大学, 2013. [49] Weld C E, Sternhagen J D, Mileham R D, et al.Temperature measurement using surface skimming bulk waves[C]//1999 IEEE Ultrasonics Symposium, Lake Tahoe, 1999: 441-444. [50] 林金树, 吴润发. 基于声表面波技术的配电网架空线温度无源无线监测系统[J]. 电子测量技术, 2020, 43(13): 167-171. Lin Jinshu, Wu Runfa.Passive-wireless temperature monitoring system based on SAW technology for overhead transmission line in distribution network[J]. Electronic Measurement Technology, 2020, 43(13): 167-171. [51] 丁永生, 赵仰东, 张晨睿, 等. 配电变压器油温油位一体化无源无线监测系统[J]. 测控技术, 2019, 38(6): 33-37. Ding Yongsheng, Zhao Yangdong, Zhang Chenrui, et al.Transformer on-line monitoring system based on SAW sensors[J]. Measurement & Control Technology, 2019, 38(6): 33-37. [52] Galipeau J D, Falconer R S, Vetelino J F, et al.Theory, design and operation of a surface acoustic wave hydrogen sulfide microsensor[J]. Sensors and Actuators B: Chemical, 1995, 24(1-3): 49-53. [53] Ippolito S J, Kandasamy S, Kalantar-Zadeh K, et al.Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing[J]. Sensors and Actuators B: Chemical, 2005, 111: 207-212. [54] Shen C Y, Huang C P, Huang W T.Gas-detecting properties of surface acoustic wave ammonia sensors[J]. Sensors and Actuators B: Chemical, 2004, 101(1-2): 1-7. [55] Hoyt A E, Ricco A J, Bartholomew J W, et al.SAW sensors for the room-temperature measurement of CO2 and relative humidity[J]. Analytical Chemistry, 1998, 70(10): 2137-2145. [56] Maeno T, Kushibe H, Takada T, et al.Pulsed electro-acoustic method for the measurement of volume charges in E-beam irradiated PMMA[C]//Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1985, Amherst, 1985: 389-397. [57] 张冶文, 潘佳萍, 郑飞虎, 等. 固体绝缘介质中空间电荷分布测量技术及其在电气工业中的应用[J]. 高电压技术, 2019, 45(8): 2603-2618. Zhang Yewen, Pan Jiaping, Zheng Feihu, et al.Distribution measurement for space charge in solid insulation medium and its application in electrical industry[J]. High Voltage Engineering, 2019, 45(8): 2603-2618. [58] Hozumi N, Suzuki H, Okamoto T, et al.Space charge measurement in XLPE cable insulation under high field[C]// IEEE 8th International Symposium on Electrets, Paris, 1994: 916-921. [59] Hozumi N, Suzuki H, Okamoto T, et al.Direct observation of time-dependent space charge profiles in XLPE cable under high electric fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(6): 1068-1076. [60] Vissouvanadin B, Vu T T N, Berquez L, et al. Deconvolution techniques for space charge recovery using pulsed electroacoustic method in coaxial geometry[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 821-828. [61] 王霞, 熊锦州, 陈驰, 等. 基于PEA 测量技术的电缆外半导电层脉冲注入方式的影响因素[J]. 高电压技术, 2017, 43(11): 3568-3575. Wang Xia, Xiong Jinzhou, Chen Chi, et al.Influential factors of pulse injection from outer semi-conductive layer of cable with pea measurement technology[J]. High Voltage Engineering, 2017, 43(11): 3568-3575. [62] Xiao Kun, Wang Youyuan, Wang Can, et al.Study on space charge behaviors and trap characteristics in LDPE/SiO2 under thermal aging[C]//2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, 2016: 546-549. [63] 王霞, 陈少卿, 成霞, 等. 电声脉冲法测量聚合物绝缘表面陷阱能级分布[J]. 中国电机工程学报, 2009, 29(1): 127-132. Wang Xia, Chen Shaoqing, Cheng Xia, et al.Measuring energy distribution of surface trap in polymer insulation by PEA method[J]. Proceedings of the CSEE, 2009, 29(1): 127-132. [64] Shao Zhihui, Wu Kai, Cheng Xi, et al.Effects of nanoparticles on trap depth in epoxy resin under different temperature[C]//2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, 2016: 526-529. [65] Galloy L, Berquez L, Baudoin F, et al.High-resolution pulsed electro-acoustic (HR PEA) measurement of space charge in outer space dielectric materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3151-3155. [66] Maeno T, Fukunaga K.High-resolution PEA charge distribution measurement system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(6): 754-757. [67] Kumaoka K, Kato T, Miyake H, et al.Development of space charge measurement system with high positionalal resolution using pulsed electro acoustic method[C]// 2014 International Symposium on Electrical Insulating Materials, Niigata, 2014: 389-392. [68] 郑飞虎, 张冶文, 吴长顺, 等. 用于固体介质中空间电荷的压电压力波法与电声脉冲法[J]. 物理学报, 2003, 52(5): 1137-1142. Zheng Feihu, Zhang Yewen, Wu Changshun, et al.Piezo-PWP and PEA methods for measuring space charge in solid dielectric[J]. Acta Physica Sinica, 2003, 52(5): 1137-1142. [69] 郑飞虎, 张冶文, 李吉晓, 等. 用压电聚合物构成的单极性声脉冲发生器[J]. 应用声学, 2003, 22(4): 6-10. Zheng Feihu, Zhang Yewen, Li Jixiao, et al.Unipolar acoustic pulse generator by using a piezoelectric polymer film[J]. Journal of Applied Acoustics, 2003, 22(4): 6-10. [70] Holé S, Bruzek C É, Lallouet N.Space charge measurements at very low temperatures[C]// 2016 IEEE International Conference on Dielectrics, Montpellier, 2016: 167-168. [71] Kawamura K, Saito H, Noto F.Development of a high voltage sensor using a piezoelectric transducer and a strain gage[J]. IEEE Transactions on Instrumentation and Measurement, 1988, 37(4): 564-568. [72] Bohnert K M, Kostovic J, Pequignot P.Fiber optic voltage sensor for 420 kV electric power systems[J]. Optical Engineering, 2000, 39(11): 3060-3067. [73] Ribeiro B, Werneck M M.FBG-PZT sensor system for high voltage measurements[C]//2011 IEEE International Instrumentation and Measurement Technology Conference, Binjiang, 2011: 1-6. [74] Pacheco M, Santoyo F M, Méndez A, et al.Piezoelectric-modulated optical fibre Bragg grating high-voltage sensor[J]. Measurement Science and Technology, 1999, 10(9): 777. [75] Allil R C, Werneck M M.Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2118-2125. [76] Fusiek G, Niewczas P.Laboratory investigation of an intensiometric dual FBG-based hybrid voltage sensor[C]// 24th International Conference on Optical Fibre Sensors, Curitiba, 2015: 96341H. [77] Xue Fen, Hu Jun, Wang Shan X, et al.Electric field sensor based on piezoelectric bending effect for wide range measurement[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5730-5737.