Multi-Energy Coordinated Energy Storage Model in Zero-Waste Cities Based on Situation Awareness of Source and Load Uncertainty
Jin Hongyang1, Teng Yun1, Leng Ouyang2, Zhang Tieyan1, Chen Zhe3
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China 2. State Grid East Inner Mongolia Economic Research Institute Huhhot 010020 China 3. Department of Energy Technology Aalborg University Aalborg DK-9220 Denmark
Abstract:In this paper, an urban multi-energy system is equivalent to a “multi-energy coordinated energy storage model in zero-waste cities (MECESM-ZWC)”, considering the complementary characteristics of domestic waste power generation and multi-energy systems in “Zero-Waste Cities”. The urban multi-energy system economy, garbage disposal capacity and renewable energy utilization rate can be effectively improved, and at the same time, regulation capacity of power grid and gas network is provided by using this model. First, this paper studies the energy input and output characteristics of domestic waste power generation and its energy coupling relationship with urban multi-energy systems, such as renewable energy generation and energy conversion equipment in gas network and power grid, in order to establish the MECESM-ZWC. Secondly, the comprehensive operating cost model is established and the MECESM-ZWC based on situation awareness of source and load uncertainty are optimized. Finally, simulation verification is performed to confirm that the economy and flexibility of the urban multi-energy system can be effectively improved by the MECESM-ZWC.
金红洋, 滕云, 冷欧阳, 张铁岩, 陈哲. 基于源荷不确定性状态感知的无废城市多能源协调储能模型[J]. 电工技术学报, 2020, 35(13): 2830-2842.
Jin Hongyang, Teng Yun, Leng Ouyang, Zhang Tieyan, Chen Zhe. Multi-Energy Coordinated Energy Storage Model in Zero-Waste Cities Based on Situation Awareness of Source and Load Uncertainty. Transactions of China Electrotechnical Society, 2020, 35(13): 2830-2842.
[1] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [2] Huang Wujing, Zhang Ning, Yang Jingwei, et al.Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2017, 10(2): 1452-1464. [3] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review of integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [4] 滕云, 张铁岩, 陈哲. 多能源互联系统优化运行与控制技术研究现状与前景展望[J]. 可再生能源, 2018, 36(3): 467-474. Teng Yun, Zhang Tieyan, Chen Zhe.Research status and prospects of the optimization and operation of multi-energy interconnected systems[J]. Renewable Energy, 2018, 36(3): 467-474. [5] Gu Wei, Wang Jun, Lu Shuai, et al.Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings[J]. Applied Energy, 2017, 199: 234-246. [6] 付菊霞, 陈洁, 滕扬新, 等. 基于集合经验模态分解的风电混合储能系统能量管理协调控制策略[J]. 电工技术学报, 2019, 34(10): 2038-2046. Fu Juxia, Chen Jie, Teng Yangxin, et al.Energy management coordination control strategy for wind power hybrid energy storage system based on EEMD[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2038-2046. [7] 叶畅, 苗世洪, 李姚旺, 等. 基于改进不确定边界的主动配电网鲁棒优化调度[J]. 电工技术学报, 2019, 34(19): 4084-4095. Ye Chang, Miao Shihong, Li Yaowang, et al.Robust optimal scheduling for active distribution network based on improved uncertain boundary[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4084-4095. [8] 周贤正, 陈玮, 郭创新. 考虑供能可靠性与风光不确定性的城市多能源系统规划[J]. 电工技术学报, 2019, 34(17): 3672-3686. Zhou Xianzheng, Chen Wei, Guo Chuangxin.An urban multi-energy system planning method incorporating energy supply reliability and wind-photovoltaic generators uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3672-3686. [9] 张风晓, 靳小龙, 穆云飞, 等. 融合虚拟储能系统的楼宇微网模型预测调控方法[J]. 中国电机工程学报, 2018, 38(15): 4420-4428. Zhang Fengxiao, Jin Xiaolong, Mu Yunfei, et al.Model predictive scheduling method for a building microgrid considering virtual storage system[J]. Proceedings of the CSEE, 2018, 38(15): 4420-4428. [10] Cherukuri S H C, Saravanan B. Hybrid energy management strategy for residential consumers using virtual and actual storage systems[J]. Journal of Energy Storage, 2019, 25: 100894. [11] 王婉璐, 杨莉, 王蕾, 等. 考虑供热网储热特性的电-热综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(21): 45-55. Wang Wanlu, Yang Li, Wang Lei, et al.Optimal dispatch of integrated electricity-heat energy system considering heat storage characteristics of heating network[J]. Automation of Electric Power Systems, 2018, 42(21): 45-55. [12] 李宏仲, 房宇娇, 肖宝辉. 考虑广义储能的区域综合能源系统优化运行研究[J]. 电网技术, 2019, 43(9): 3130-3138. Li Hongzhong, Fang Yujiao, Xiao Baohui.Research on optimized operation of regional integrated energy system considering generalized energy storage[J]. Power System Technology, 2019, 43(9): 3130-3138. [13] 滕云, 孙鹏, 罗桓桓, 等. 计及电热混合储能的多源微网自治优化运行模型[J]. 中国电机工程学报, 2019, 39(18): 5316-5324. Teng Yun, Sun Peng, Luo Huanhuan.Autonomous optimization operation model for multi-source microgrid considering electrothermal hybrid energy storage[J]. Proceedings of the CSEE, 2019, 39(18): 5316-5324. [14] Teng Yun, Wang Zedi, Li Yan, et al.Multi energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility[J]. CSEE Journal of Power and Energy Systems, 2019, 5(2): 266-274. [15] 孙秋野, 胡旌伟, 杨凌霄, 等. 基于GAN技术的自能源混合建模与参数辨识方法[J]. 自动化学报, 2018, 44(5): 901-914. Sun Qiuye, Hu Jingwei, Yang Lingxiao, et al.We-energy hybrid modeling and parameter identification with GAN technology[J]. Acta Automatica Sinica, 2018, 44(5): 901-914. [16] 朱兰, 王吉, 唐陇军, 等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术, 2019, 43(1): 116-126. Zhu Lan, Wang Ji, Tang Longjun, et al.Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power System Technology, 2019, 43(1): 116-126. [17] 葛夏鹏, 刘文颖, 蔡万通, 等. 基于风电离散化概率序列的机会约束规划优化调度方法[J]. 电工技术学报, 2018, 33(21): 5069-5079. Ge Xiapeng, Liu Wenying, Cai Wantong, et al.Optimal scheduling method of chance constrained programming based on discrete wind power probability[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5069-5079. [18] 李天成, 范红旗, 孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用[J]. 自动化学报, 2015, 41(12): 1981-2002. Li Tiancheng, Fan Hongqi, Sun Shudong.Particle filtering: theory, approach, and application for multitarget tracking[J]. Acta Automatica Sinica, 2015, 41(12): 1981-2002. [19] 程泽, 董梦男, 杨添剀, 等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报, 2014, 29(9): 245-252. Cheng Ze, Dong Mengnan, Yang Tiankai, et al.Extraction of solar cell model parameters based on self-adaptive chaos particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 245-252. [20] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. Luo Yi, Shao Zhouce, Zhang Lei, et al.Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467.