电工技术学报  2021, Vol. 36 Issue (7): 1314-1323    DOI: 10.19595/j.cnki.1000-6753.tces.201094
“电力装备智能感知与智能终端”专题(特约主编:成永红教授) |
面向多源电力感知终端的异构多参量特征级融合:融合模式、融合框架与场景验证
王红霞1, 王波1, 董旭柱1, 姚良忠1, 张锐锋2, 马富齐1
1.武汉大学电气与自动化学院 武汉 430074;
2.贵州电力科学研究院 贵阳 550000
Heterogeneous Multi-Parameter Feature-Level Fusion for Multi-Source Power Sensing Terminals: Fusion Mode, Fusion Framework and Application Scenarios
Wang Hongxia1, Wang Bo1, Dong Xuzhu1, Yao Liangzhong1, Zhang Ruifeng2, Ma Fuqi1
1. School of Electrical Engineering and Automation Wuhan University 430074 China;
2. Guizhou Electric Power Research Institute Guiyang 550000 China
全文: PDF (1237 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 对多源电力感知终端产生的异构多参量数据进行融合分析,是实现电力物联网下电力目标有效感知的关键。目前,电力多参量融合仍以同构多参量融合和决策级异构多参量融合为主,异构、多源的融合及分析技术薄弱,无法满足电力物联网下的异构多参量深度融合需求。该文提出一种适用于电力结构化时序参量和非结构化图像参量的普适性融合框架,可用于电力对象的描述性、预测性或决策性分析。首先考虑电力时序参量的时间和空间特性,将其转换为适用于非线性混沌系统的递归图,从而使其和非结构化电力图像具有相同的描述空间;然后用卷积神经网络对二类参量进行特征提取,并对特征矩阵按权重进行拼接融合、全连接和目标感知;最后,以输电线路覆冰等级感知和绝缘子污秽等级感知为应用场景,从精确性和容错性角度对所提模型进行分析,验证了所提模型的普适性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红霞
王波
董旭柱
姚良忠
张锐锋
马富齐
关键词 多源电力感知终端电力异构多参量特征级融合特征同化多参量递归图    
Abstract:Fusion analysis of heterogeneous multi-parameter data generated by multi-source power sensing terminals is the key to effective power target sensing under the power Internet of Things. At present, however, multi-parameter fusion in power system is still dominated by homogeneous multi-parameter fusion and decision-level heterogeneous multi-parameter fusion, which can no longer meet the needs of deep fusion for heterogeneous multi-parameter under the power Internet of Things. To solve this problem, this paper proposes a universal fusion framework suitable for structured multiple time series and unstructured images, which can be used for descriptive, predictive or decision-making analysis of power things. Firstly, with the consideration of time and space characteristics, the time series are converted into a recurrence plot suitable for nonlinear chaotic systems, so that the time series and images have the same description space. Then convolutional neural networks are used to extract the features, following with weighted feature concatenate fusion, fully connection and target perception. Finally, taking transmission line icing level perception and insulator contamination degree perception as scenarios, the model is analyzed from the perspective of accuracy and fault tolerance, which verifies the universality of the proposed model.
Key wordsMulti-source power sensing terminals    power heterogeneous mutli-parameters    feature level fusion    feature assimilation    multi-parameter recurrence plot   
收稿日期: 2020-08-27     
PACS: TM769  
通讯作者: 王 波 男,1978年生, 教授,博士生导师,研究方向为电力深度视觉、边缘计算和电力大数据。E-mail:whwdwb@whu.edu.cn   
作者简介: 王红霞 女,1995年生,博士研究生,研究方向为电力大数据及融合。E-mail:2018282070092@whu.edu.cn
引用本文:   
王红霞, 王波, 董旭柱, 姚良忠, 张锐锋, 马富齐. 面向多源电力感知终端的异构多参量特征级融合:融合模式、融合框架与场景验证[J]. 电工技术学报, 2021, 36(7): 1314-1323. Wang Hongxia, Wang Bo, Dong Xuzhu, Yao Liangzhong, Zhang Ruifeng, Ma Fuqi. Heterogeneous Multi-Parameter Feature-Level Fusion for Multi-Source Power Sensing Terminals: Fusion Mode, Fusion Framework and Application Scenarios. Transactions of China Electrotechnical Society, 2021, 36(7): 1314-1323.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.201094          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I7/1314