Electromagnetic Ultrasonic Transducer Response Characteristics Excited by High Energy Pulses
Liu Suzhen1,2, Wang Wenjie1,2, Zhang Chuang1,2, Jin Liang3, Yang Qingxin1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China;
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China;
3. Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China
The transmitted and received ultrasonic intensities of conventional electromagnetic ultrasonic transducer (EMAT) has small amplitudes and low signal-to-noise ratios. A concept for a novel high - energy ultrasonic excitation system without static magnetic field is presented, and its core is high-energy pulse excitation power supply. The novel high-energy pulse excitation power supply applies a transient high voltage to the excitation coil by a LC oscillator circuit and generates thousands of amps of current in the excitation coil, which is much larger than the current in the conventional EMAT excitation coil. The intensity of ultrasonic signals can be greatly increased and the transducer volume can be effectively reduced. The mechanism of high-energy pulse excitation of ultrasonic waves was studied in this paper. The variation law of magnetic field, force field and sound field of the high-energy pulsed EMAT during the transduction process was then obtained. High-energy pulsed power supply excited the Lamb wave with A0 mode as the main mode, and the electromagnetic ultrasound experiment under the excitation of high-energy pulse was performed. The experimental results show that when the lift-off distance is less than 2mm, the Lamb wave with A0 mode as the main mode has high signal-to-noise ratio and can accurately locate the defect, which has more advantages in detecting micro-crack defects.
刘素贞, 王文杰, 张闯, 金亮, 杨庆新. 高能脉冲激励下的电磁超声响应特性[J]. 电工技术学报, 2019, 34(20): 4171-4178.
Liu Suzhen, Wang Wenjie, Zhang Chuang, Jin Liang, Yang Qingxin. Electromagnetic Ultrasonic Transducer Response Characteristics Excited by High Energy Pulses. Transactions of China Electrotechnical Society, 2019, 34(20): 4171-4178.
[1] Every A G.The importance of ultrasonics in nondestructive testing and evaluation[J]. Ultrasonics, 2014, 54(7): 1717-1718.
[2] 陈鹏, 韩德来, 蔡强富, 等. 电磁超声检测技术的研究进展[J]. 国外电子测量技术, 2012(11): 18-21.
Chen Peng, Han Delai, Cai Qiangfu, et al.Research progress in electromagnetic acoustic testing[J]. Foreign Electronic Measurement Technology, 2012(11): 18-21.
[3] 金亮, 寇晓斐, 郭富坤, 等. 基于电磁超声换能器的铁磁材料电磁声发射检测方法[J]. 电工技术学报, 2017, 32(18): 98-105.
Jin Liang, Kou Xiaofei, Guo Fukun, et al.Elec- tromagnetic acoustic emission detection method of ferromagnetic materials based on the EMAT[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 98-105.
[4] 王淑娟, 康磊, 翟国富. 电磁超声换能器的微弱信号检测[J]. 无损检测, 2007, 29(10): 591-595.
Wang Shujuan, Kang Lei, Zhai Guofu.Research on weak signal detection method for electromagnetic acoustic transducer[J]. Nondestructive Testing, 2007, 29(10): 591-595.
[5] 张闯, 李福彪, 刘素贞, 等. 电磁加载对超声传播特性的影响[J]. 电工技术学报, 2017, 32(2): 102-107.
Zhang Chuang, Li Fubiao, Liu Suzhen, et al.Impacts of the electromagnetic loading on the propagation of the ultrasonic wave[J]. Transactions of China Elec- trotechnical Society, 2017, 32(2): 102-107.
[6] 范吉志. 电磁超声换能器线圈设计与提高换能效率研究[J]. 传感技术学报, 2016, 29(1): 29-34.
Fan Jizhi.Research of spiral coil on EMAT to improve transduction efficiency[J]. Chinese Journal of Sensors and Actuators, 2016, 29(1): 29-34.
[7] Rueter D.Induction coil as a non-contacting ultra- sound transmitter and detector: modeling of magnetic fields for improving the performance[J]. Ultrasonics, 2016, 65: 200-210.
[8] Furuya Y, Torizuka S, Takeuchi E, et al.Ultrasonic fatigue testing on notched and smooth specimens of ultrafine-grained steel[J]. Materials & Design, 2012, 37(1): 515-520.
[9] 王淑娟, 李智超, 李鹏展, 等. 非铁磁材料表面波电磁超声换能器接收性能分析与优化设计[J]. 中国电机工程学报, 2015, 35(9): 2360-2365.
Wang Shujuan, Li Zhichao, Li Pengzhan, et al.Receiving performance analysis and optimal design of surface wave electromagnetic acoustic transducers in nonferromagnetic materials[J]. Proceedings of the CSEE, 2015, 35(9): 2360-2365.
[10] 刘素贞, 张严伟, 张闯, 等. 电磁超声激励系统阻抗匹配网络的设计[J]. 电工技术学报, 2016, 31(16): 1-6.
Liu Suzhen, Zhang Yanwei, Zhang Chuang, et al.Design of impedance matching network for electro- magnetic ultrasonic excitation system[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(16): 1-6.
[11] 翟国富, 梁宝, 贾文斌, 等. 骨架型电磁超声相控阵换能器设计[J]. 中国电机工程学报, 2018, 29(1): 1-7.
Zhai Guofu, Liang Bao, Jia Wenbin, et al.Design of skeleton-type electromagnetic ultrasonic phased array transducer[J]. Proceedings of the CSEE, 2018, 29(1): 1-7.
[12] 何健鹏, 徐科, 任威平. 线圈自激励电磁超声换能器设计及特性研究[J]. 机械工程学报, 2017, 53(16): 134-140.
He Jianpeng, Xu Ke, Ren Weiping.EMAT design of self-excitation with coils and its characteristics study[J]. Journal of Mechanical Engineering, 2017, 53(16): 134-140.
[13] Rueter D, Morgenstern T.Ultrasound generation with high power and coil only EMAT concepts[J]. Ultrasonics, 2014, 54(8): 2141-2150.
[14] Xie Yuedong, Yin Liyuan, Liu Zenghua, et al.A novel variable-length meander-line-coil EMAT for side lobe suppression[J]. IEEE Sensors Journal, 2016, 16(16): 6279-6287.
[15] Turner S L, Rabani A, Axinte D A, et al.Dynamic ultrasonic contact detection using acoustic emissions[J]. Ultrasonics, 2014, 54(3): 749-753.
[16] Wang Shujuan, Kang Lei, Li Zhichao, et al.3-D modeling and analysis of meander-line-coil surface wave EMATs[J]. Mechatronics, 2012, 22(6): 653-660.
[17] 刘骥, 贺元吉, 杨嘉祥. 电容储能型强流脉冲放电回路数值分析[J]. 哈尔滨理工大学学报, 1999, 4(5): 90-94.
Liu Ji, He Yuanji, Yang Jiaxiang.Numerical analysis on pulsed capacitive energy-stored circuit with high current[J]. Journal of Harbin University of Science and Technology, 1999, 4(5): 90-94.
[18] 刘素贞, 张严伟, 张闯, 等. 基于电磁超声双换能器的单模态Lamb波激励方法研究[J]. 电工技术学报, 2018, 33(1): 140-147.
Liu Suzhen, Zhang Yanwei, Zhang Chuang, et al.Research on excitation method of single-mode Lamb wave based on electromagnetic acoustic double trans- ducer[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 140-147.