Current Status and Development Trend of Hydrogen Production Technology by Wind Power
Sun Hexu1, Li Zheng1, Chen Aibing2, Zhang Yan1, Mei Chunxiao3
1. School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 2. School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 3. Hebei Construction & Investment Group New Energy Co. Ltd Shijiazhuang 050051 China
Abstract:The technology of generating hydrogen by wind power is an effective mean to improve the utilization of wind energy and alleviate the problem of wind power curtailment. Firstly, the basic principles and technical characteristics of the wind power hydrogen production technology were briefly introduced. Then the history of the development of the wind power hydrogen production technology was reviewed, the research status of wind power hydrogen production technology in China and abroad was introduced in detail. The technical advantages of hydrogen production by wind power and research results were summarized. On this basis, the wind power hydrogen production system was elaborated in detail. In addition, the prospect of the application of the wind power hydrogen production technology was analyzed and discussed. In the end, the key technology of the wind power hydrogen production and the problems to be solved were comprehensively reviewed. The development of hydrogen production technology in wind power was analyzed from many aspects, which provides references for future development of hydrogen production technology by wind power.
孙鹤旭, 李争, 陈爱兵, 张岩, 梅春晓. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
Sun Hexu, Li Zheng, Chen Aibing, Zhang Yan, Mei Chunxiao. Current Status and Development Trend of Hydrogen Production Technology by Wind Power. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[1] Qolipour M, Mostafaeipour A, Tousi O M.Techno- economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study[J]. Renewable & Sustainable Energy Reviews, 2017, 78(10): 113-123. [2] 时璟丽, 高虎, 王红芳. 风电制氢经济性分析[J]. 中国能源, 2015, 37(2): 11-14. Shi Jingli, Gao Hu, Wang Hongfang.Economic analysis of hydrogen production by wind power[J]. China's Energy, 2015, 37(2): 11-14. [3] 吴巍, 汪可友, 李国杰, 等. 提升风电消纳区间的鲁棒机组组合[J]. 电工技术学报, 2018, 33(3): 523-532. Wu Wei, Wang Keyou, Li Guojie, et al.Robust unit commitment to improve the admissible region of wind power[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 523-532. [4] 刘畅, 吴浩, 高长征, 等. 风电消纳能力分析方法的研究[J]. 电力系统保护与控制, 2014, 42(4): 61-66. Liu Chang, Wu Hao, Gao Changzheng, et al.Study on analysis method of wind power accommodation[J]. Power System Protection and Control, 2014, 42(4): 61-66. [5] 曾鸣, 李晨, 刘超, 等. 考虑电价补贴政策的风电投资决策模型与分析[J]. 电力系统保护与控制, 2012, 40(23): 17-23. Zeng Ming, Li Chen, Liu Chao, et al.Decision model and analysis of wind power investment considering electricity price subsidy policy[J]. Power System Protection and Control, 2012, 40(23): 17-23. [6] Rahmouni S, Negrou B, Settou N, et al.Prospects of hydrogen production potential from renewable resources in Algeria[J]. International Journal of Hydrogen Energy, 2016, 42(2): 1371-1383. [7] Fujii K, Sugiyama M, Nakamura S.Hydrogen generation using electrochemical water splitting via electricity generated by nature energy[J]. Journal of the Japan Institute of Energy, 2015, 94(1): 27-34. [8] 王波. 全球最大风电制氢综合利用示范项目整体并网[J]. 能源研究与信息, 2016, 43(3): 162-163. Wang Bo.The world's largest wind power hydrogen production comprehensive utilization demonstration project as a whole[J]. Energy Research and Information, 2016, 43(3): 162-163. [9] Ali M, Ekström J, Alahäivälä A, et al.Assessing the upward demand response potential for mitigating the wind generation curtailment: a case study[C]// IEEE European Energy Market, Dresden, Germany, 2017: 1-6. [10] 袁铁江, 李国军, 张增强. 风电-氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang.Optimal modeling of equipment investment planning for wind power hydrogen energy storage and coal chemical multi energy coupling system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 21-30. [11] 伊文婧, 梁琦, 裴庆冰. 氢能促进我国能源系统清洁低碳转型的应用及进[J]. 环境保护, 2018, 46(2): 30-34. Yi Wenjing, Liang Qi, Pei Qingbing.Enhance the hydrogen application in China's energy system to accelerate the energy transition: status and progress[J]. Environmental Protection, 2018, 46(2): 30-34. [12] Valverdeisorna L, Ali D, Hogg D, et al.Modelling the performance of wind-hydrogen energy systems: case study the hydrogen office in scotland/UK[J]. Renewable & Sustainable Energy Reviews, 2016, 53(1): 1313-1332. [13] Korpås M, Greiner C J.Opportunities for hydrogen production in connection with wind power in weak grids[J]. Renewable Energy, 2008, 33(6):1199-1208. [14] Nishimura A, Moriyama T, Shimano J.An investigation of the conversion and transportation of hydrogen produced by electrolysis of water using wind power[J]. Kagaku Kogaku Ronbunshu, 2017, 43(6): 386-392. [15] 常进法, 肖瑶, 罗兆艳. 水电解制氢非贵金属催化剂的研究进展[J]. 物理化学学报, 2016, 32(7): 1556-1592. Chang Jinfa, Xiao Yao, Luo Zhaoyan.Research progress of non noble metal catalysts for hydrogen production by water electrolysis[J]. Journal of Physical Chemistry, 2016, 32(7): 1556-1592. [16] Dutton A G, Bleijs J A M, Dienhart H, et al. Experience in the design, sizing, economics, and implementation of autonomous wind-powered hydrogen production systems[J]. International Journal of Hydrogen Energy, 2000, 25(8): 705-722. [17] Kassem N.Offshore wind farms for hydrogen production subject to uncertainties[C]// International Joint Power Generation Conference Collocated with Turboexpo, Atlanta, Georgia, USA, 2003: 857-864. [18] Sherif S A, Barbir F, Veziroglu T N.Wind energy and the hydrogen economy-review of the technology[J]. Solar Energy, 2005, 78(5): 647-660. [19] Honnery D, Moriarty P.Estimating global hydrogen production from wind[J]. International Journal of Hydrogen Energy, 2009, 34(2): 727-736. [20] Bartels J R, Pate M B, Olson N K.An economic survey of hydrogen production from conventional and alternative energy sources[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8371-8384. [21] Genç M S, Çelik M, İlyas Karasu.A review on wind energy and wind-hydrogen production in Turkey: a case study of hydrogen production via electrolysis system supplied by wind energy conversion system in central Anatolian Turkey[J]. Renewable & Sustainable Energy Reviews, 2012, 16(9): 6631-6646. [22] Bhandari R, Trudewind C A, Zapp P.Life cycle assessment of hydrogen production via electrolysis-a review[J]. Journal of Cleaner Production, 2014, 85(12): 151-163. [23] Qolipour M, Mostafaeipour A, Tousi O M.Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study[J]. Renewable & Sustainable Energy Reviews, 2017, 78(10): 113-123. [24] Takahashi R, Kinoshita H, Murata T, et al.A cooperative control method for output power smoothing and hydrogen production by using variable speed wind generator[C]//IEEE Power Electronics and Motion Control Conference, Poznan, Poland, 2008: 2337-2342. [25] Clúa J G G, Battista H D, Mantz R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5786-5792. [26] Pino F J, Valverde L, Rosa F.Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems[J]. Journal of Power Sources, 2011, 196(9): 4418-4426. [27] Valdés R, Lucio J H, Rodríguez L R.Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid[J]. Renewable Energy, 2013, 53(9): 249-257. [28] Belmokhtar K, Doumbia M L, Agbossou K.New fuzzy logic based management strategy to improve hydrogen production from hybrid wind power systems[J]. International Journal of Renewable Energy Research, 2014, 4(3): 731-742. [29] Sarrias-Mena R, Fernández-Ramírez L M, García-Vázquez C A, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International Journal of Hydrogen Energy, 2015, 40(7): 2927-2938. [30] 李国军, 袁铁江, 孙谊媊, 等. 风电-氢储能与煤化工多能耦合系统全寿命周期经济性评估[J]. 电工技术学报, 2017, 32(21):132-142. Li Guojun, Yuan Tiejiang, Sunyiqian, et al. Full life cycle economic evaluation of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 132-142. [31] 何芳. 解读美国《全面能源战略》[J]. WTO经济导刊, 2015(2): 65-66. He Fang.Interpretation of 《Comprehensive energy strategy》in the United States[J]. WTO Economic Herald, 2015(2): 65-66. [32] 尹文良, 芮晓明, 武鑫. 1.5MW风电制氢系统建模分析与仿真研究[J/OL]. 中国科技论文在线,2016: 1-7. Yin Wenliang, Rui Xiaoming, Wu Xin.Modeling analysis and simulation research on 1.5MW wind power hydrogen production system[J/OL]. China Science and Technology Paper online, 2016: 1-7. [33] 李铭, 刘贵利, 孙心亮. 中国大规模非并网风电与海水淡化制氢基地的链合布局[J]. 资源科学, 2008, 30(11): 1632-1639. Li Ming, Liu Guili, Sun Xinliang.Chain distribution of large-scale non grid connected wind power and seawater desalination hydrogen production base in China[J]. Resource Science, 2008, 30(11): 1632-1639. [34] 周凌云, 王超. 非并网风电制氢及其在绿色交通物流中的应用[J]. 中国工程科学, 2015, 17(3): 50-55. Zhou Lingyun, Wang Chao.Non grid connected wind power hydrogen production and its application in green traffic logistics[J]. Engineering Science in China, 2015, 17(3): 50-55. [35] 舟丹. 我国建成首座利用可再生能源制氢的70MPa加氢站[J]. 中外能源, 2017, 30(8): 7. Dan Zhou.China is the first 70MPa hydrogenation station to make hydrogen from renewable energy[J]. Chinese and Foreign Energy, 2017, 30(8): 7. [36] Yan Zhuoyong, Gu Weidong.Research on integrated system of non-grid-connected wind power and water-electrolytic hydrogen production[C]//IEEE World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, 2010: 1-4. [37] Yoshida T, Kojima K.Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. The Electrochemical Society Interface, 2015, 24(2): 45-49. [38] Jones D J.Global change, energy issues and regulation policies[M]. Dordrecht: Springer Netherlands, 2013. [39] 舟丹. 水电解制氢技术发展概况[J]. 中外能源, 2017, 10(8): 69. Zhou Dan.Development of hydrogen production by water electrolysis[J].Chinese and Foreign Energy, 2017, 10(8): 69. [40] 靳爱民. 更高效的水电解制氢技术[J]. 石油炼制与化工, 2017, 11(2): 112. Jin Aimin.More efficient water electrolysis technology[J]. Petroleum Processing and Petrochemicals, 2017, 11(2): 112. [41] Yoshida Y, Umemura A, Takahashi R, et al.Experimental study of hydrogen production system with stand-alone wind power generators[C]//IEEE Tenth International Conference on Ecological Vehicles and Renewable Energies, Monte Carlo, Monaco, 2015: 1-5. [42] Valdés R, Lucio J H, Rodríguez L R.Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid[J]. Renewable Energy, 2013, 53(9): 249-257. [43] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of dfig based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232. [44] 孔令国, 蔡国伟, 陈冲, 等. 基于氢储能的主动型永磁直驱风电机组建模与并网控制[J]. 电工技术学报, 2017, 32(18): 276-285. Kong Lingguo, Cai Guowei, Chen Chong, et al.Modeling and grid-connected control of proactive permanent magnet direct-driven wind turbine based on energy storage of hydrogen[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 276-285. [45] 颜爽, 陈昊, 王青, 等. 开关磁阻发电机控制参数多目标优化研究[J]. 徐州: 电工技术学报, 2017, 32(15): 66-75. Yan Shuang, Chen Hao, Wang Qing, et al.Research on multi-objective optimization of control parameters for switched reluctance generators[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 66-75. [46] 王雨婷, 张卓然, 于立, 等. 低压大电流双凸极无刷直流发电机电枢绕组股线环流的抑制方法[J]. 电工技术学报, 2018, 33(2): 275-283. Wang Yuting, Zhang Zhuoran, Yu Li, et al.Strand circulating current suppression method in armature windings of low voltage high current doubly salient brushless DC generator[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 275-283. [47] Dobó Z, Árpád Bence Palotás.Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(28): 11849-11856. [48] 郭鹏, 文晶, 朱丹丹, 等. 基于源-荷互动的大规模风电消纳协调控制策略[J]. 电工技术学报, 2017, 32(3): 1-9. Guo Peng, Wen Jing, Zhu Dandan, et al.The coordination control strategy for large-scale wind power consumption based on source-load interactive[J]. Transactions of China Electrotechnical Society, 2017, 32(3):1-9. [49] Sakurai M, Terao T, Sone Y.Development of water electrolysis system for oxygen generation aimed at energy saving and high safety[C]//45th International Conference on Enviromental System, Bellevue, Washington, 2015: 1-8. [50] 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. Ning Nan.Study on adaptability of wide power fluctuation in water electrolysis hydrogen production plant[J]. Ship Science and Technology, 2017, 39(11): 133-136. [51] Belmokhtar K, Doumbia M L, Agbossou K.New fuzzy logic based management strategy to improve hydrogen production from hybrid wind power systems[J]. International Journal of Renewable Energy Research, 2014, 4(3): 731-742. [52] Thornton A W, Simon C M, Kim J, et al.Materials genome in action: identifying the performance limits of physical hydrogen storage[J]. Chemistry of Materials a Publication of the American Chemical Society, 2017, 29(7): 2844. [53] Colón Y J, Fairenjimenez D, Wilmer C E, et al.High-throughput screening of porous crystalline materials for hydrogen storage capacity near room temperature[J]. The Journal of Physical Chemistry C, 2016, 118(10): 5383-5389. [54] 蔡国伟, 陈冲, 孔令国. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94. Cai Guowei, Chen Chong, Kong Lingguo.Wind power/hydrogen/fuel cell/supercapacitor hybrid system control strategy[J].Transactions of China Electrotechnical Society, 2017, 32(17): 84-94. [55] 张建良, 齐冬莲, 吴越. 基于KingView的风-氢-燃料电池微网监控系统设计[J]. 实验室研究与探索, 2017, 36(6): 32-36. Zhang Jianliang, Qi Donglian, Wu Yue.Design of micro network monitoring system for wind hydrogen fuel cell based on KingView[J]. Laboratory Research and Exploration, 2017, 36(6): 32-36. [56] Jayasankar V N, Vinatha U.Implementation of adaptive fuzzy controller in a grid connected wind-solar hybrid energy system with power quality improvement features[C]//IEEE Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy, Bangalore, India, 2016: 1-5. [57] 张建良, 吴越, 齐冬莲. 风电制氢-燃料电池微网实验系统的设计[J]. 实验室研究与探索, 2017, 36(1): 54-58. Zhang Jianliang, Wu Yue, Qi Donglian.Design of an experimental system for wind power hydrogen production and fuel cell micronetwork[J].Laboratory Research and Exploration, 2017, 36(1): 54-58. [58] Haghi E, Fwoler M, Raahemifar K.Economic analysis of hydrogen production in context of a microgrid[C]// 2017 IEEE International Conference on Smart Energy Grid Engineering, Oshawa, ON, Canada, 2017, 8: 79-84. [59] 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学, 2015, 17(3): 30-34. Yan Zhuoyong, Kong Xiangwei.Study on the non grid connected wind electrolysis hydrogen production system and its application[J]. Engineering Science in China, 2015, 17(3): 30-34. [60] 周杰, 王莉娜, 孙凯. 热电领域中DC-DC变换器的综述[J]. 电源技术, 2014, 38(3): 591-595. Zhou Jie, Wang Lina, Sun Kai.Summary of DC-DC converter thermoelectric field[J]. Power Supply Technology, 2014, 38(3): 591-595. [61] 徐琪. Cuk变换器在风电制氢中的应用研究[D]. 石家庄: 河北科技大学, 2017.