电工技术学报  2019, Vol. 34 Issue (18): 3937-3948    DOI: 10.19595/j.cnki.1000-6753.tces.171452
电化学储能 |
基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究
颜湘武1, 邓浩然2, 郭琪3, 曲伟1
1. 华北电力大学分布式储能与微网河北省重点实验室 保定 071003;
2. 中国汽车技术研究中心有限公司 天津 300162;
3. 国网湖北省电力公司检修公司 武汉 430000
Study on the State of Health Detection of Power Batteries Based on Adaptive Unscented Kalman Filters and the Battery Echelon Utilization
Yan Xiangwu1, Deng Haoran2, Guo Qi3, Qu Wei1
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-Grid North China Electric Power University Baoding 071003 China;
2. China Automotive Technology & Research Center Tianjin 300162 China;
3. State Grid Hubei Corporation Maintenance Company Wuhan 430000 China
全文: PDF (42792 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 准确估计动力锂离子电池组内各单体电池的荷电状态(SOC)和健康状态(SOH)对延长动力锂离子电池组使用寿命及梯次利用至关重要。该文以电池Thevenin二阶等效电路模型为基础,运用自适应无迹卡尔曼滤波(AUKF)算法对电池SOC和欧姆内阻进行实时估算,并根据欧姆内阻与电池SOH的函数对应关系,实时估算电池SOH。在两种不同工况下对电池做充放电实验,验证了该方法的可行性和准确性。并通过对锂离子电池组中各单体电池及电池组整体健康状态的估算,定位不合格单体电池,量化电池组的完好度,制定明确的电动汽车动力锂离子电池组的梯次利用方案,实现废旧动力电池的资源利用最大化。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜湘武
邓浩然
郭琪
曲伟
关键词 自适应无迹卡尔曼滤波荷电状态健康状态电池组完好度锂离子动力电池梯次利用    
Abstract:It is essential to estimate the state of charge (SOC) and state of health (SOH) of the cell in the electric vehicle li-ion power battery accurately for extending the power battery life and the battery echelon utilization. Based on the Thevenin equivalent circuit model of battery, the adaptive unscented Kalman filter (AUKF) is used to estimate the ohmic resistance and the state of charge in real time. According to the function between the ohmic resistance and the state of health, the state of health can be estimated in real time. The charging and discharging experiments of battery under two different conditions verify the feasibility and accuracy of this method. In addition, through the estimation of SOH of the power battery pack and cells, the unqualified cell can be located, the intact rate of battery can be quantified, and a clear solution for the electric vehicle li-ion power battery echelon utilization can be formulated, which maximizes the resource utilization of waste power batteries.
Key wordsAdaptive unscented Kalman filter    state of charge    state of health    battery intact rate    Li-ion power battery echelon utilization   
收稿日期: 2017-10-13      出版日期: 2019-09-26
PACS: TM919  
通讯作者: 颜湘武 男,1965年生,教授,博士生导师,研究方向为新能源电力系统分析与控制、现代电力变换、新型储能与节能技术。E-mail: xiangwuy@ncepu.edu.cn   
作者简介: 邓浩然 女,1993年生,硕士研究生,工程师,研究方向为动力电池健康状态估计、新型储能与节能技术。E-mail: denghaoran@catarc.ac.cn
引用本文:   
颜湘武, 邓浩然, 郭琪, 曲伟. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, Qu Wei. Study on the State of Health Detection of Power Batteries Based on Adaptive Unscented Kalman Filters and the Battery Echelon Utilization. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.171452          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/I18/3937