电工技术学报  2018, Vol. 33 Issue (17): 3958-3964    DOI: 10.19595/j.cnki.1000-6753.tces.171195
电工理论与新技术 |
基于无迹粒子滤波的车载锂离子电池状态估计
谢长君1,2, 费亚龙1, 曾春年1,2, 房伟1
1. 武汉理工大学自动化学院 武汉 430070;
2. 武汉理工大学汽车工程学院 武汉 430070
State-of-Charge Estimation of Lithium-Ion Battery Using Unscented Particle Filter in Vehicle
Xie Changjun1,2, Fei Yalong1, Zeng Chunnian1,2, Fang Wei1
1. School of Automation Wuhan University of Technology Wuhan 430070 China;
2. School of Automotive Engineering Wuhan University of Technology Wuhan 430070 China
全文: PDF (17429 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的无迹卡尔曼滤波(UKF)和粒子滤波(PF)算法估计动力锂离子电池的荷电状态(SOC)时,常会出现电池模型参数不准确或粒子退化等问题导致估计精度差甚至系统发散等现象。为解决粒子匮乏和噪声干扰等问题,提出一种改进的估计算法——无迹粒子滤波算法(UPF)以实现SOC的精确估计。运用无迹卡尔曼算法为每个粒子计算均值和协方差,解决粒子滤波技术中粒子退化的问题。通过锂离子电池充放电实验,对等效模型进行辨识,最后在脉冲充放电和UDDS动态工况下对该算法进行测试验证。实验结果证明,基于二阶RC等效电路模型的UPF算法能显著提高SOC估计的实时性和精确性,其SOC估计精度在2%以内,收敛速度在250 s内。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢长君
费亚龙
曾春年
房伟
关键词 荷电状态锂离子电池无迹卡尔曼滤波粒子滤波无迹粒子滤波    
Abstract:The inaccurate battery models and particle degeneration problems often result in estimation errors or even divergence over time using the traditional unscented Kalman filter(UKF) and particle filter (PF) algorithms to estimate the state of charge(SOC) of power battery. In this study, an innovation method based on the unscented particle filter(UPF) is presented to suppress the particle degeneracy and noise interference. The unscented Kalman algorithm is used to calculate the mean and covariance for each particle and solve the problem of particle degeneration in particle filter technology. Through the lithium-ion battery charge-discharge test, the equivalent model is identified, and finally the algorithm is tested and verified under the pulse charge-discharge and UDDS dynamic conditions. The results show that the UPF method based on the two RC equivalent circuit model can improve the real-time performance and the precision of SOC estimation, and the estimation accuracy is less than 2%, the convergence rate is less than 250 s.
Key wordsState of charge    lithium-ion battery    unscented Kalman filter    particle filter    unscented particle filter   
收稿日期: 2017-08-18      出版日期: 2018-09-14
PACS: TM911  
基金资助:国家自然科学基金(51477125)、湖北省自然科学基金杰青项目(2017CFA049)、武汉市青年科技晨光计划项目(2016070204010155)和武汉理工大学优秀硕士基金(2016YS070)资助
通讯作者: 谢长君 男,1980年生,教授,博士生导师,研究方向为新能源电动汽车系统优化、电池管理与自动控制。E-mail:jackxie@whut.edu.cn   
作者简介: 费亚龙 男,1992年生,硕士研究生,研究方向为电池管理系统。E-mail:nicklefyl@163.com
引用本文:   
谢长君, 费亚龙, 曾春年, 房伟. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. Xie Changjun, Fei Yalong, Zeng Chunnian, Fang Wei. State-of-Charge Estimation of Lithium-Ion Battery Using Unscented Particle Filter in Vehicle. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.171195          https://dgjsxb.ces-transaction.com/CN/Y2018/V33/I17/3958