Experiment of Effects of Ambient Medium on Sulfur Hexafluoride Degradation for a Double Dielectric Barrier Discharge Reactor
Xiao Hanyan1, Zhang Xiaoxing1,2, Xiao Song2, Hu Xiongxiong1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;
2. School of Electrical Engineering Wuhan University Wuhan 430074 China
Due to the extreme high global warming potential and long atmospheric lifetime of SF6, the removal of SF6 using dielectric barrier discharge (DBD) plasma technology has been a hot and difficult problem in the field of environmental protection. When the DBD reactor is placed in different ambient conditions, the discharge characteristics of DBD and the temperature rise of the reactor will show differences due to the incomplete contact between the electrode and barrier dielectrics as well as the different properties of different ambient media. The discharge characteristics and temperature changes were both measured when the DBD reactor was exposed in the air and immersed in the oil. The effects of ambient medium on the removal of SF6 were investigated by comparing the removal rate of SF6, energy yield and the final degradation products in both two ambient conditions. The experimental results show that the discharge power of the reactor immersed in oil is significantly higher than that in the air environment although its temperature is relatively lower. Therefore, more energy is used for the abatement of SF6 in oil ambience, which improves the removal rate. In addition, a greater energy yield is also achieved in oil ambience. This suggests that the immersion of the plasma reactor in electrically insulating oil enhances the performance of SF6 removal.
肖焓艳, 张晓星, 肖淞, 胡雄雄. 环境介质对介质阻挡放电降解SF6影响的实验[J]. 电工技术学报, 2017, 32(20): 20-27.
Xiao Hanyan, Zhang Xiaoxing, Xiao Song, Hu Xiongxiong. Experiment of Effects of Ambient Medium on Sulfur Hexafluoride Degradation for a Double Dielectric Barrier Discharge Reactor. Transactions of China Electrotechnical Society, 2017, 32(20): 20-27.
[1] 林莘, 王亮, 徐建源, 等. 非平衡态双温度SF 6 等离子体电弧数学模型研究[J]. 高压电器, 2015, 51(3): 1-7.
Lin Shen, Wang Liang, Xu Jianyuan, et al. Non- equilibrium dual temperature SF 6 plasma arc mathe- matical model research[J]. High Voltage Apparatus, 2015, 51(3): 1-7.
[2] 林莘, 李鑫涛, 徐建源, 等. 均匀电场下SF 6 气体击穿电压的数值计算及光谱实验研究[J]. 中国电机工程学报, 2016, 36(1): 301-309.
Lin Shen, Li Xintao, Xu Jianyuan, et al. Research on numerical computation of SF 6 breakdown voltages and spectral experiment in uniform electric fields[J]. Proceedings of the CSEE, 2016, 36(1): 301-309.
[3] 周松霖, 李伟, 张雅静, 等. 低浓度SF 6 在线监测技术研究与应用[J]. 高压电器, 2016, 52(12): 254- 259.
Zhou Songlin, Li Wei, Zhang Yajing, et al. Research and application of an online monitoring technology for low concentration SF 6 [J]. High Voltage Apparatus, 2016, 52(12): 254-259.
[4] 肖淞, 张晓星, 韩晔飞, 等. 不均匀电场下CF 3 I/N 2 混合气体工频击穿特性试验[J]. 电工技术学报, 2016, 31(20): 228-236.
Xiao Song, Zhang Xiaoxing, Han Yefei, et al. Experiment on power frequency puncture of CF 3 I/N 2 gas mixtures in non-uniform electric fields[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 228- 236.
[5] Matsui R, Cvitkovitch D. History of atmospheric SF 6 from 1973 to 2008[J]. Atmospheric Chemistry & Physics, 2010, 10(21): 10305-10320.
[6] Levin I, Naegler T, Heinz R, et al. The global SF 6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories[J]. Atmospheric Chemistry & Physics, 2010, 10(6): 2655-2662.
[7] Kashiwagi D, Takai A, Takubo T, et al. Metal phosphate catalysts effective for degradation of sulfur hexafluoride[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 632-640.
[8] Zhang J, Zhou J Z, Liu Q, et al. Efficient removal of sulfur hexafluoride (SF 6 ) through reacting with recycled electroplating sludge[J]. Environmental Science & Technology, 2013, 47(12): 6493-6499.
[9] Zhang J, Zhou J Z, Xu Z P, et al. Decomposition of potent greenhouse gas sulfur hexafluoride (SF 6 ) by Kirschsteinite-dominant stainless steel slag[J]. Environmental Science & Technology, 2014, 48(1): 599-606.
[10] Huang L, Dinghong G U, Yang L, et al. Photo- reductive degradation of sulfur hexafluoride in the presence of styrene[J]. Journal of Environmental Sciences, 2008, 20(2): 183-188.
[11] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165.
Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165.
[12] 刘繁, 翁俊, 汪建华, 等. 常压微波等离子体炬的模拟及硫化氢处理[J]. 强激光与粒子束, 2015, 27(11): 272-276.
Lui Fan, Weng Jun, Wang Jianhua, et al. Simulation of an atmospheric pressure microwave plasma jet system and treatment of waste H 2 S[J]. High Power Laser and Particle Beams, 2015, 27(11): 272-276.
[13] 赵蔚欣, 段钰锋, 张君, 等. 低温等离子体耦合氯化钙模拟烟气脱汞实验研究[J]. 中国电机工程学报, 2016, 36(4): 1002-1008.
Zhao Weixin, Duan Yufeng, Zhang Jun, et al. Experimental study on mercury removal by non- thermal plasma coupled with CaCl 2 [J]. Proceedings of the CSEE, 2016, 36(4): 1002-1008.
[14] 刘昊, 苗心向, 杨科, 等. 大气常压等离子射流清洗溶胶-凝胶SiO 2 膜表面油脂污染物[J]. 强激光与粒子束, 2015, 27(11): 112-117.
Liu Hao, Miao Xinxiang, Yang Ke, et al. atmosphere pressure plasma jetsol-gel SiO 2 coatingvacuum system of high power lasergrease contaminationlaser induced damage threshold[J]. High Power Laser and Particle Beams, 2015, 27(11): 112-117.
[15] 王艳辉, 张瑞丽, 孙继忠, 等. 脉冲介质阻挡放电脱除N 2 /NO体系中NO的模拟研究[J]. 高电压技术, 2016, 42(2): 405-413.
Wang Yanhui, Zhang Ruili, Sun Jizhong, et al. Simulation study of the removal of NO from N 2 /NO mixture by pulsed dielectric-barrier discharge at atmospheric pressure[J]. High Voltage Engineering, 2016, 42(2): 405-413.
[16] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF 6 废气综述[J]. 电工技术学报, 2016, 31(24): 16-24.
Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue. A Review of degradation of SF 6 waste by low temper- ature plasma[J]. Transactions of China Electro- technical Society, 2016, 31(24): 16-24.
[17] Lee H M, Chang M B, Wu K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970.
[18] Zhuang Q, Clements B, Mcfarlan A, et al. Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF 6 ) using a dielectric barrier discharge (DBD) plasma[J]. Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35.
[19] Nguyen D B, Lee W G. Effect of ambient condition for coaxial dielectric barrier discharge reactor on CO 2 reforming of CH 4 to syngas[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(3): 972-978.
[20] Nguyen D B, Lee W G. Effects of self-heating in a dielectric barrier discharge reactor on CHF 3 decom- position[J]. Chemical Engineering Journal, 2016, 294: 58-64.
[21] Zeng F, Tang J, Fan Q, et al. Decomposition characteristics of SF 6 under thermal fault for temperatures below 400℃[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(3): 995-1004.
[22] 唐炬, 潘建宇, 姚强, 等. SF 6 在故障温度为300~400℃时的分解特性研究[J]. 中国电机工程学报, 2013, 33(31): 202-210.
Tang Ju, Pan Jianyu, Yao Qian, et al. Decomposition characteristic study of SF 6 with fault temperature between 300~400℃[J]. Proceedings of the CSEE, 2013, 33(31): 202-210.
[23] 张芝涛, 张志鹏, 俞哲. 大气压介质阻挡微放电通道的相互作用[J]. 高电压技术, 2015, 41(9): 2880- 2887.
Zhang Zhitao, Zhang Zhipeng, Yu Zhe. Interaction between micro discharge channels in dielectric barrier discharge at atmospheric pressure[J]. High Voltage Engineering, 2015, 41(9): 2880-2887.
[24] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.