Abstract:The high voltage low-frequency AC transmission has many advantages in off-shore wind power, metropolis power supply, AC cable reconstruction for enlarging capacity. Herein, high voltage AC-AC converter is one of the significant technologies. As the direct AC-AC converter, the cascaded H-bridge matrix converter (CHB-MC) is an appropriate converter owing to its high performance in low frequency conditions. In this paper, DC voltage fluctuation and circulating current (CC) of CHB-MC were analyzed with common term formula based on the CC equivalent circuit. The frequency and magnitude of characterized frequency of CC were derived, and the relevant parameters of CHB-MC were also analyzed in detail. The simulation on PLECS platform verified the analyses above.
徐云飞, 肖湘宁, 孙雅旻, 袁敞, 龙云波. 应用于高压低频输电的H桥级联型矩阵变换器环流机理分析[J]. 电工技术学报, 2017, 32(6): 191-200.
Xu Yunfei, Xiao Xiangning, Sun Yamin, Yuan Chang, Long Yunbo. Circulating Current Analysis of Cascaded H-Bridge Matrix Converter for High Voltage Low-Frequency AC Transmission. Transactions of China Electrotechnical Society, 2017, 32(6): 191-200.
[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [2] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian. Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12. [3] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17. Tang Guangfu, Luo Xiang, Wei Xiaoguang. Multi- terminal HVDC and DC-grid technology[J]. Pro- ceedings of the CSEE, 2013, 33(10): 8-17. [4] 马钊, 周孝信, 尚宇炜, 等. 未来配电系统形态及发展趋势[J]. 中国电机工程学报, 2015, 35(6): 1289-1298. Ma Zhao, Zhou Xiaoxin, Shang Yuwei, et al. Form and development trend of future distribution system[J]. Proceedings of the CSEE, 2015, 35(6): 1289-1298. [5] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [6] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al. Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [7] 倪镭, 唐宏德, 曹林放, 等. 上海城市地下变电站设计建设回顾与展望[J]. 华东电力, 2011, 39(8): 1320-1323. Ni Lei, Tang Hongde, Cao Linfang, et al. Review and prospect of underground substations design in Shanghai[J]. East China Electric Power, 2011, 39(8): 1320-1323. [8] 冯岱鹏, 胡炎, 邰能灵, 等. 地下变电站虚拟现实仿真系统的研究[J]. 电力系统保护与控制, 2010, 38(11): 90-93. Feng Daipeng, Hu Yan, Tai Nengling, et al. Research of underground substation simulator based on virtual reality[J]. Power System Protection and Control, 2010, 38(11): 90-93. [9] 刘英, 曹晓珑, 何子兰, 等. 现役交流XLPE电缆配电线路改为直流运行的技术方案及实例分析[J]. 中国电机工程学报, 2016, 36(1): 96-103. Liu Ying, Cao Xiaolong, He Zilan, et al. Technical scheme and case study of the uprating renovation of existing XLPE cables from AC distribution system to DC operation[J]. Proceedings of the CSEE, 2016, 36(1): 96-103. [10] Satpute U S, Jangamshetti S H, Joshi D R. Feasibility study of fractional frequency transmission system[C]// International Conference on Power Electronics, Drives and Energy Systems (PEDES), New Delhi, 2010: 1-6. [11] Wang Xifan, Wei Xiaohui, Meng Yongqing. Experiment on grid-connection process of wind turbines in fractional frequency wind power system[J]. IEEE Transactions on Energy Conversion, 2015, 30(1): 22-31. [12] Chen Hao, Johnson M H, Aliprantis D C. Low- frequency AC transmission for offshore wind power[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2236-2244. [13] Fischer W, Braun R, Erlich I. Low frequency high voltage offshore grid for transmission of renewable power[C]//3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Techno- logies (ISGT Europe), 2012: 1-6. [14] Mau C N, Rudion K, Orths A, et al. Grid connection of offshore wind farm based DFIG with low frequency AC transmission system[C]//IEEE Power and Energy Society General Meeting, San Diego, CA, 2012: 1-7. [15] Korn A J, Winkelnkemper M, Steimer P, et al. Direct modular multi-level converter for gearless low-speed drives[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-7. [16] Hagiwara M, Hasegawa I, Akagi H. Startup and low-speed operation of an adjustable-speed motor driven by a modular multilevel cascade inverter (MMCI)[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012: 718-725. [17] Baruschka L, Mertens A. A new three-phase AC/AC modular multilevel converter with six branches in hexagonal configuration[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1400-1410. [18] Kawamura W, Hagiwara M, Akagi H. Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells[J]. IEEE Transa- ctions on Industry Applications, 2014, 50(5): 3536- 3548. [19] Erlich I, Shewarega F, Wrede H, et al. Low frequency AC for offshore wind power transmission-prospects and challenges[C]//11th IET International Conference on AC and DC Power Transmission, 2015: 1-7. [20] Kammerer F, Kolb J, Braun M. Fully decoupled current control and energy balancing of the modular multilevel matrix converter[C]//15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, 2012: S2a-S3a. [21] Kammerer F, Gommeringer M, Kolb J, et al. Energy balancing of the modular multilevel matrix converter based on a new transformed arm power analysis[C]// 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe), 2014: 1-10. [22] 高建, 苏建徽, 高航, 等. 模块化多电平换流器电容电压与环流的控制策略[J]. 电力系统保护与控制, 2014, 42(3): 56-62. Gao Jian, Su Jianhui, Gao Hang, et al. Capacitor voltage and circulation current control strategy in modular multilevel converter[J]. Power System Pro- tection and Control, 2014, 42(3): 56-62.