Prediction of Rime Accretion on Transmission Line Based on Optimal Time Step Model
Jiang Xingliang1, Jiang Fangyi1, Wang Quanlin1, Luo Bing2, Han Xingbo1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Power Grid Technology Research Center of China Southern Power Grid Guangzhou 510080 China
Abstract:Transmission line icing is one of the major natural disasters affecting the safe and stable operation of power system. It has great significance to study the influence of atmospheric environmental parameters on the conductor icing process and accurately predict the ice quality and shape. In this paper, the time step of ice prediction that directly affects the time cost and accuracy of prediction was considered, and the optimal time step model of icing prediction was established. For the rime accretion problem, the real environmental parameters were re-determined in each step of prediction. The finite volume method (FVM) was used to solve the k-ε turbulence model based on the RNG method to obtain the airflow field. Lagrange method was utilized for calculating the trajectory of droplets based on the airflow field obtained, and then the quality and ice shape of rime were predicted through the post-processing. The influence of each factor (airflow velocity, air temperature, liquid water content, median droplet volume diameter and diameter of conductor) on the rime accretion on conductor was studied and summarized. In order to validate the rime accretion prediction model proposed, the natural icing experiment was carried out at the Natural Icing Test Station of Chongqing University at Xuefeng Mountain. The ice quality and ice shape of the experiment were consistent with the prediction results, which proved that the prediction model was accurate and effective.
蒋兴良, 姜方义, 汪泉霖, 罗兵, 韩兴波. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18): 4408-4418.
Jiang Xingliang, Jiang Fangyi, Wang Quanlin, Luo Bing, Han Xingbo. Prediction of Rime Accretion on Transmission Line Based on Optimal Time Step Model. Transactions of China Electrotechnical Society, 2018, 33(18): 4408-4418.
[1] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [2] 郭昊, 刘沛清, 屈秋林, 等. 输电线雾凇覆冰过程的二维数值模拟[J]. 工程力学, 2011, 28(5): 212-218. Guo Hao, Liu Peiqing, Qu Qiulin, et al.Two-D numberical simulation if the rime accretion process on transitionlines[J]. Engineering Machanics, 2011, 28(5): 212-218. [3] Fu P, Farzaneh M, Bouchard G.Two-dimensional modeling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46: 132-146. [4] Golikova T N.Basic principle of the measurement for ice on overhead transmission lines[C]//The 5th International Workshop on Atmospheric Icing of Structure, Tokyo, Japan, 1990. [5] 孙才新, 蒋兴良, 熊启新, 等. 导线覆冰及其干湿增长临界条件分析[J]. 中国电机工程学报, 2003, 23(3):141-145. Sun Caixin, Jiang Xingliang, Xiong Qixin, et al.Analysis of critical icing conditions of conductor and wet-dry growth[J]. Proceedings of the CSEE, 2003, 23(3): 141-145. [6] 陈凌. 旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究[D]. 重庆: 重庆大学, 2011. [7] Wright W B.Advancement in the LEWICE ice accretion model[R]. AIAA Paper 9.-0171, 1993. [8] 舒立春, 李特, 蒋兴良, 等. 交流电场强度对导线雾凇覆冰特性的影响[J]. 中国电机工程学报, 2012, 32(19): 140-147. Shu Lichun, Li Te, Jiang Xinliang, et al.Influences of AC electric field strength on conductor rime icing performance[J]. Proceedings of the CSEE, 2012, 32(19): 140-147. [9] 刘胜春, 司佳钧, 郭昊, 等. 输电线路导线覆冰模拟计算与试验研究[J]. 中国电机工程学报, 2014, 34(增刊1): 246-255. Liu Shengchun, Si Jiajun, Guo Hao, et al.Numerical and experimental study on accreted ice on conductor of transmission lines[J]. Proceedings of the CSEE, 2014, 34(S1): 246-255. [10] Joachim, Schöberl.NETGEN An advancing front 2D/3D-mesh generator based on abstract rules[J]. Computing and Visualization in Science, 1997, 1(1): 41-52. [11] 李玲, 李玉梁. 应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动[J]. 水科学进展, 2000, 11(4): 357-361 Li Ling, Li Yuliang.Numerical simulation of turbulent flow around bluff bodies using the RNG k-ε turbulent model[J]. Advances in Water Science, 2000, 11(4): 357-361. [12] Macklin W C.The density and structure of ice formed by accretion[J]. Quarterly Journal of the Royal Meteorological Society, 1962, 88(357): 342-343. [13] Bain M, Gayet J F.Contribution to the modeling of the ice accretion process[C]//Proceedings of the 1st IWAIS, 1983. [14] Personne P, Gayet J F.Ice accretion on wires and anti-icing induced by joule effect[J]. Journal of Applied Meteorology, 1988, 27(2): 101-114. [15] Makkonen L.Modeling of ice accretion on wires[J]. Journal of Climate Applied Meteorology, 1984, 23(6): 929-939. [16] Pflaum J C, Pruppache H R.A wind tunnel investigation of the growth of graupel initiated from frozen drops[J]. Journal of Atmosphere Science, 1979, 36(4): 680-689. [17] Jones K F.The density of natural ice accretions related to nondimensional icing parameters[J]. Qqarterly Journal of the Royal Meteorological Society, 1962, 116(492): 477-496. [18] 梁曦东, 李雨佳, 张轶博, 等. 输电导线的覆冰时变仿真模型[J]. 高电压技术, 2014, 40(2): 336-343. Liang Xidong, Li Yujia, Zhang Yibo, et al.Time- dependent simulation model of ice accretion on transmission line[J].High Voltage Engineering, 2014, 40(2): 336-343. [19] 薛艺为, 阳林, 郝艳捧, 等. 输电线路悬式复合绝缘子雨凇与轻雾凇覆冰形态和覆冰过程对比研究[J]. 电工技术学报, 2016, 31(8): 212-219. Xue Yiwei, Yanglin, Hao Yanpeng, et al.A comparative study on icing morphology and process of glaze and light rime in suspension composite insulators on transmission lines[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 212-219. [20] 张暕, 何青. 输电线路覆冰时导线表面形状对碰撞系数的影响[J]. 电工技术学报, 2016, 31(13): 209-217. Zhang Jian, He Qing.Influence of conductor surface shape on collision coefficient during transmission line icing[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 209-217. [21] 张志劲, 黄海舟, 蒋兴良, 等. 复合绝缘子雾凇覆冰厚度预测模型[J]. 电工技术学报, 2014, 29(6): 318-325. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al.Model for predicting thickness of rime accreted on composite insulators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 318-325. [22] 刘国特, 郝艳捧, 阳林, 等. 基于改进Messinger覆冰模型导线防冰临界电流计算及其影响因素分析[J]. 电工技术学报, 2016, 31(18): 176-183. Liu Guote, Hao Yanpeng, Yang Lin, et al.Caculation and influencing factors analysis of conductor anti- icing critical current based on improved messinger icing model[J]. Transactions of China Electro- technical Society, 2016, 31(18): 176-183.