Abstract:This paper presents the circuit configuration, topological family and the master-slave power energy management phase-shifting control strategy for multi-winding simultaneously-supplying DC-DC converter mode multi-input inverter. Meanwhile, this paper also investigates the control strategy, steady principle and design criteria of the main circuit parameters. This circuit configuration is composed of a Boost multi-winding DC-DC converter and a cascaded Buck type inverter, while the master-slave power energy management means the maximum powers of 1st, 2nd,…, (n-1)th input sources and the insufficient load power of nth source supplements. The simulation and experimental results of the 1 000V·A DC-AC full-bridge multi-input inverter have shown that the proposed converter has the advantages such as input/output isolation and input/input isolation, strong voltage matching ability, high power density, simultaneous power supply by multiple input sources in a high-frequency switching cycle, wide regulating range of duty cycle, and smooth transition among different operating modes, etc.
[1] 沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015, 30(1): 346-351. Shen Xin, Cao Min. Research on the influence of distributed power grid for distribution network[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 346-351. [2] 赵书强, 王明雨, 胡永强, 等. 基于不确定理论的光伏出力预测研究[J]. 电工技术学报, 2015, 30(6): 213-220. Zhao Shuqiang, Wang Mingyu, Hu Yongqiang, et al. Research on the prediction of PV output based on uncertainty theory[J]. Transactions of China Electro- technical Society, 2015, 30(6): 213-220. [3] 徐立中, 易永辉, 朱承治, 等. 考虑风电随机性的微网多时间尺度能量优化调度[J]. 电力系统保护与控制, 2014, 42(23): 1-8. Xu Lizhong, Yi Yonghui, Zhu Chengzhi, et al. Multi- time scale optimal energy dispatch of microgrid considering stochastic wind power[J]. Power System Protection and Control, 2014, 42(23): 1-8. [4] 王雨, 苏适, 严玉廷. 基于Kalman滤波和BP神经网络的光伏超短期功率预测模型[J]. 电气技术, 2014, 15(1): 42-46. Wang Yu, Su Shi, Yan Yuting. Very short-term PV power forecasting model based on Kalman filter algorithm and BP neutral network[J]. Electrical Technology, 2014, 15(1): 42-46. [5] 郭创新, 张理, 张金江, 等. 风光互补综合发电系统可靠性分析[J]. 电力系统保护与控制, 2013, 41(1): 102-108. Guo Chuangxin, Zhang Li, Zhang Jinjiang, et al. Reliability analysis of wind and photovoltaic integrated generating system[J]. Power System Pro- tection and Control, 2013, 41(1): 102-108. [6] 蔡国伟, 孔令国, 潘超, 等. 风光储联合发电系统的建模及并网控制策略[J]. 电工技术学报, 2013, 28(9): 196-204. Cai Guowei, Kong Lingguo, Pan Chao, et al. System modeling of wind-PV-ES hybrid power system and its control strategy for grid-connected[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 196-204. [7] 陈昌松, 段善旭, 蔡涛, 等. 基于改进遗传算法的微网能量管理模型[J]. 电工技术学报, 2013, 28(4): 196-201. Chen Changsong, Duan Shanxu, Cai Tao, et al. Microgrid energy management model based on improved genetic arithmetic[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 196-201. [8] 张永明, 丁宝, 傅卫东, 等. 基于直流配电与直流微网的电气节能研究[J]. 电工技术学报, 2015, 30(增1): 389-397. Zhang Yongming, Ding Bao, Fu Weidong, et al. Electrical energy conservation based on DC distri- bution and DC microgrid[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 389-397. [9] Eid A. Control of hybrid energy systems micro- grid[C]//IEEE Smart Energy Grid Engineering Con- ference, Oshawa, Canada, 2013: 1-6. [10] Strunz K, Abbasi E, Huu D N. DC microgrid for wind and solar power integration[J]. IEEE Transactions on Power Electronics, 2014, 2(1): 115-126. [11] Chen Chengwei, Chen K H, Chen Y M. Modeling and controller design of an autonomous PV module for DMPPT PV systems[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4723-4732. [12] 宋鑫, 肖建国, 牛洁茹, 等. 一种用于新能源混合发电的移相控制三端口DC-DC变流器[J]. 电工技术学报, 2015, 30(17): 36-44. Song Xin, Xiao Jianguo, Niu Jieru, et al. A three- port DC-DC converter with phase shift control for the hybrid renewable energy generation system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 36-44. [13] Bae S, Kwasinski A. Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1867-1876. [14] Shen C L, Wang S W. A novel dual-input power converter for renewable-energy generation system[C]// IEEE Advanced Robotics and Intelligent Systems Conference, Taipei, 2015: 1-6. [15] Kumar L, Jain S. A multiple input DC-DC converter for interfacing of battery/ultracapacitor in EVs/ HEVs/FCVs[C]//IEEE Power Electronics Conference, Delhi, 2012: 1-6. [16] Praveen K P, Ravishankar A N. Simulation of a hybrid energy system using multiple input DC-DC converter and Z-source inverter with maximum boost control strategy[C]//IEEE Computation of Power Energy Information and Communication Conference, Chennai, India, 2014: 250-255. [17] Cho N J, Kim Y S, Oh C Y, et al. Design of multiple-input multiple-output flyback converter for hybrid renewable energy system[C]//IEEE Electrical Machines and Systems Conf, Busan, Korea, 2013: 1345-1353.