Abstract:In order to solve the problems of single function, low utilization rate, high cost and difficulty in coordination of power electronic equipment in the distribution network, a new comprehensive compensation method for unbalanced distribution network with four-arm H-bridge converter was proposed. A new topology structure of adding cascade H-bridge to ground branch at the neutral point of static var generator was proposed to provide circulation circuit for ground fault and parameter asymmetry compensation current. Considering the influence of unbalanced parameters of three phase to ground and unbalanced load in distribution network, the functions of active and reactive power compensation, three-phase unbalanced load compensation, unbalanced voltage suppression and ground fault current compensation were comprehensive into the same comprehensive compensation device. Based on the analysis of the principle and interaction mechanism of each function, the multi-objective cooperative control strategy based on sequence decoupling control, and the switching method of three-phase parameter unbalance suppression and ground fault current compensation were proposed. In normal operation, the comprehensive compensation device dynamically compensated active and reactive power of distribution network, suppresses three-phase unbalanced load and unbalanced voltage of three-phase parameters. In case of grounding fault, three-phase parameter unbalanced voltage suppression switched to ground fault current compensation. Simulation results verify the effectiveness of the proposed method.
游建章, 郭谋发. 含四桥臂H桥变流器的不对称配电网综合补偿方法[J]. 电工技术学报, 2022, 37(11): 2849-2858.
You Jianzhang, Guo Moufa. Comprehensive Compensation Method for Asymmetric Distribution Network with Four-Arm H-Bridge Converter. Transactions of China Electrotechnical Society, 2022, 37(11): 2849-2858.
[1] 徐殿国, 张书鑫, 李彬彬. 电力系统柔性一次设备及其关键技术:应用与展望[J]. 电力系统自动化, 2018, 42(7): 2-22. Xu Dianguo, Zhang Shuxin, Li Binbin.Flexible primary equipment in power system and their key technologies: applications and prospects[J]. Automation of Electric Power Systems,2018, 42(7): 2-22. [2] 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8): 15-24. Li Jianlin, Yuan Xiaodong, Yu Zhenggang, et al.Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of Electric Power Systems,2019, 43(8): 15-24. [3] 尹发根, 王淳. 电力弹簧研究进展: 原理、拓扑结构、控制和应用[J]. 电网技术, 2019, 43(1): 174-184. Yin Fagen, Wang Chun.Review of electric spring: principle, topologies, control and applications[J]. Power System Technology, 2019, 43(1): 174-184. [4] 熊飞, 聂川杰, 李骏驰, 等. 电力电子变压器的内部能量流动协调控制策略[J]. 电力系统自动化, 2020, 44(15): 127-138. Xiong Fei, Nie Chuanjie, Li Junchi, et al.Coordination control strategy for energy flow inside power electronic transformer[J]. Automation of Electric Power Systems, 2020, 44(15): 127-138. [5] 王辉, 李群湛, 李晋, 等. 基于YNd变压器与静止无功发生器的电气化铁路同相供电综合补偿方案[J]. 电工技术学报, 2020, 35(17): 3739-3749. Wang Hui, Li Qunzhan, Li Jin, et al.Comprehensive compensation schemes of cophase power supply of electrified railway based on YNd transformer and static vargenerator[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3739-3749. [6] 黎燕, 罗安, 方璐, 等. 高电压等级新型混合型有源滤波器[J]. 电工技术学报, 2013, 28(6): 147-157. Li Yan, Luo An, Fang Lu, et al.A novel hybrid active power filter at high-voltage rank[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 147-157. [7] 要焕年. 电力系统谐振接地[M]. 北京:中国电力出版社, 2009. [8] Janssen M, Kraemer S, Schmidt R, et al.Residual current compensation (RCC) for resonant grounded transmission systems using high performance voltage source inverter[C]//2003 IEEE PES Transmission and Distribution Conference and Exposition, Dallas, TX, 2003: 574-578. [9] 郭谋发, 陈静洁, 张伟骏, 等. 基于单相级联H桥变流器的配电网故障消弧与选线新方法[J]. 电网技术, 2015, 39(9):2677-2684. Guo Moufa, Chen Jingjie, Zhang Weijun, et al.A novel approach for fault arc extinguishing and feeder selection in distribution networks based on single-phase cascade H-bridge converter[J]. Power System Technology, 2015, 39(9):2677-2684. [10] 高聪哲, 姜新建, 李永东. 基于级联有源滤波器与静止无功补偿器的综合补偿控制方案[J]. 电力系统自动化, 2012, 36(7): 92-98. GaoCongzhe, Jiang Xinjian, Li Yongdong. A universal compensation control scheme based on cascade active power filter and static varcompensator[J]. Automation of Electric Power Systems, 2012, 36(7): 92-98. [11] 张定华, 桂卫华, 王卫安, 等. 新型电气化铁道电能质量综合补偿系统的研究及工程应用[J]. 电工技术学报, 2009, 24(3): 189-194. Zhang Dinghua, Gui Weihua, Wang Weian, et al.Study and application of a new power quality combined compensation system for electrified railway[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 189-194. [12] 刘宏达, 周磊. 多功能并网逆变器及其在接入配电系统的微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2649-2658. Liu Hongda, Zhou Lei.A multi-functional grid-connected inverter and its application in micro-grid access to distribution system[J]. Proceedings of the CSEE, 2014, 34(16): 2649-2658. [13] 杜春水, 张承慧, 刘鑫正, 等. 带有源电力滤波功能的三相光伏并网发电系统控制策略[J]. 电工技术学报, 2010, 25(9): 163-169. Du Chunshui, Zhang Chenghui, Liu Xinzheng, et al.Control strategy on the three-phase grid-connected photovoltaic generation system with shunt active power filter[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 163-169. [14] 薛畅, 王建赜, 纪延超, 等. 结合蓄电池储能系统的STATCOM的电流解耦控制[J]. 电力系统保护与控制, 2013, 41(6): 43-48. Xue Chang, Wang Jianze, Ji Yanchao, et al.Current decoupling control of STATCOM combined with battery energy storage system[J]. Power System Protection and Control, 2013, 41(6): 43-48. [15] 刘欢欢, 符杨, 苏向敬,等. 带蓄电池储能系统的DSTATCOM有功无功联合优化控制[J]. 电力系统自动化, 2020, 44(1): 134-141. Liu Huanhuan, Fu Yang, Su Xiangjing, et al.Joint optimization control of active and reactive power for DSTATCOM with battery energy storage system[J]. Automation of Electric Power Systems, 2020, 44(1): 134-141. [16] 黄晓明, 范志华, 苗世洪, 等. 含储能单元的统一电能质量调节器功率协调控制策略[J]. 高电压技术, 2018, 44(10): 3390-3398. Huang Xiaoming, Fan Zhihua, Miao Shihong, et al.Coordinated power control strategy of unified power quality conditioner with energy storage unit[J]. High Voltage Engineering, 2018, 44(10): 3390-3398. [17] 郭谋发, 游建章, 张伟骏, 等. 基于三相级联H桥变流器的配电网接地故障分相柔性消弧方法[J]. 电工技术学报, 2016, 31(17): 11-22. Guo Moufa, You Jianzhang, Zhang Weijun, et al.Separate-phase flexible arc-suppression method of earth-fault in distribution systems based on three-phase cascaded H-bridge converter[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 11-22. [18] 周兴达, 陆帅. 一种基于消弧线圈和静止同步补偿器协同作用的配电网消弧结构与方法[J]. 电工技术学报, 2019, 34(6): 1251-1262. Zhou Xingda, Lu Shuai.An arc-suppression method based on the coordinated operation of the petersen coil and the staticsynchronous compensator in distribution networks[J]. Transaction of China Electrotechnical Society, 2019, 34(6): 1251-1262. [19] 孟令辉, 舒泽亮, 闫晗, 等. 基于特征次谐波补偿的单相统一电能质量调节器并联变换器控制策略[J]. 电工技术学报, 2020, 35(24): 5125-5133. Meng Linghui, Shu Zeliang, Yan Han, et al.Control strategy for single-phase unified power quality conditioner of parallel converter based on specific order harmonics compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5125-5133. [20] 叶满园, 任威, 李宋, 等. 基于控制载波自由度的级联H桥逆变器改进型PWM技术[J]. 电工技术学报, 2021, 36(14): 3010-3021. Ye Manyuan, Ren Wei, Li Song, et al.Improved PWM technology of cascaded H-bridge inverter based on control of carrier degree of freedom[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3010-3021. [21] 陈仲, 孙健博, 许亚明, 等. 采用输出周期脉冲循环的级联H桥型逆变器功率均衡方法[J]. 电工技术学报, 2020, 35(4): 827-838. Chen Zhong, Sun Jianbo, Xu Yaming, et al.Power balance method of cascaded H-bridge inverter based on pulse circulation in output period[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 827-838. [22] 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19): 4009-4018. Chen Yaai, Lin Yankang, Wang Sai, et al.Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018. [23] 张林利, 张毅, 薛永端, 等.考虑系统不对称的小电流接地故障相识别[J].电力自动化设备, 2019, 39(4): 24-29. Zhang Linli, Zhang Yi, Xue Yongduan, et al.Fault phase identification of non-solidly grounding system considering system asymmetry[J]. Electric Power Automation Equipment, 2019, 39(4): 24-29.