电工技术学报  2017, Vol. 32 Issue (5): 1-8    DOI:
电机与电器 |
电动汽车PMSM退磁故障诊断及故障模式识别
李红梅,陈涛
合肥工业大学电气与自动化工程学院 合肥 230009
Demagnetization Fault Diagnosis and Fault Mode Recognition of PMSM for EV
Li Hongmei,Chen Tao
School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China
全文: PDF (2882 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 电动汽车永磁同步电动机(PMSM)驱动系统受其功率密度、控制方式以及运行环境的影响,易出现永磁体局部退磁或均匀退磁故障,为了实现电动汽车PMSM驱动系统的安全可靠运行,PMSM退磁故障诊断与故障模式识别已成为亟需解决的关键技术问题之一。首先提出采用代数辨识法实现永磁体磁链的在线辨识,将辨识结果作为退磁故障定性诊断的依据;在此基础上,采用基于希尔伯特黄变换的定子电流瞬时频率分析方法,实现车用工况下局部退磁故障非平稳特征信号的有效提取。最后,通过系统仿真研究和实验研究证实建议的永磁体退磁故障诊断及故障模式识别的一体化解决方案能够在测量噪声和车用工况约束下,通过永磁体磁链的在线准确辨识及局部退磁非平稳微弱故障特征信号的有效提取,实现永磁体退磁故障的在线准确诊断及故障模式的有效识别。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红梅
陈涛
关键词 电动汽车永磁同步电动机驱动系统代数辨识法希尔伯特黄变换退磁故障诊断故障模式识别    
Abstract:The local demagnetization fault and uniform demagnetization fault of permanent magnets easily appears in permanent magnet synchronous motor (PMSM) drive system of electric vehicle (EV) due to the influences of PMSM power density, control method and operation environment. In order to realize safe and reliable operation of PMSM drive system, the demagnetization fault diagnosis and fault mode recognition of PMSM has been one of the key technique problems which urgently need to be solved. Therefore, an algebraic identification method is first proposed in this paper to implement online identification of permanent magnet flux, then the identification results is used as the criterion of qualitative diagnosis of demagnetization fault, and then, the instantaneous frequency analysis method of stator current based on Hilbert-Hang transform (HHT) is adopted to realize the effective extraction of non-stationary characteristic signals of local demagnetization fault under the vehicle operating conditions. At last, the simulation and experimental research results are showed to confirm that the proposed integrated solutions of demagnetization fault diagnosis and fault mode recognition of permanent magnets are able to realize the signal of online accurate diagnosis of demagnetization fault and reliable recognition of fault mode by realizing the online accurate identification of permanent magnet flux and the effective extraction of non-stationary weak characteristic signals of local demagnetization fault under the constraints of measurement noise and vehicle operating conditions. Finally, recognition of demagnetization fault online diagnosis and fault mode can be achieved effectively.
Key wordsElectric vehicle    permanent magnet synchronous motor drive system    algebraic identification method    Hilbert-Huang transform    demagnetization fault diagnosis    fault mode recognition   
收稿日期: 2015-10-14      出版日期: 2017-03-22
PACS: TM351  
基金资助:国家自然科学基金(51377041)、安徽省变频电机及控制系统工程技术研究中心(2010AKSY0273)及安徽省教育厅(KJ2011A217)资助项目。
通讯作者: 李红梅 女,1969年生,博士,教授,博士生导师,研究方向为新能源汽车、电机控制和非线性动态等。E-mail:lhmyy01@sina.com   
作者简介: 陈 涛 男,1981年生,博士研究生,研究方向为信号处理与PMSM故障诊断。E-mail:jzitchentao@126.com
引用本文:   
李红梅,陈涛. 电动汽车PMSM退磁故障诊断及故障模式识别[J]. 电工技术学报, 2017, 32(5): 1-8. Li Hongmei,Chen Tao. Demagnetization Fault Diagnosis and Fault Mode Recognition of PMSM for EV. Transactions of China Electrotechnical Society, 2017, 32(5): 1-8.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2017/V32/I5/1