Abstract:Micro- and nano-alumina/epoxy resin composites were prepared in laboratory. The effects of different particle diameters and contents on space charge of epoxy resin composites were analyzed in this paper. The space charge distribution of experimental samples was measured before and after AC aging in high hygrothermal environment, to reveal the effects of alumina on electrical characteristics of composites. It is found that more space charges appeared in micro-composites and nano-composites with the increasing of alumina particles content. The sedimentation phenomenon of micro-alumina particles is more obvious in the samples of micro-alumina/epoxy resin composites than that in the samples of room temperature curable epoxy resin. The samples of micro-alumina/epoxy resin composites show different contents of micro-alumina between the up and down layers. Under the environment of 80℃ and 90% RH, the space charges were detected again after AC aging at 20kV/mm. It is shown that the withstanding aging ability of nano-composite is stronger than those of neat epoxy and micro-composite.
龚瑾, 李喆, 刘新月. 氧化铝/环氧树脂复合材料空间电荷特性与高温高湿环境下交流电场老化[J]. 电工技术学报, 2016, 31(18): 191-198.
Gong Jin, Li Zhe, Liu Xinyue. Space Charge and AC Field Aging in High Hygrothermal Environment of Alumina/Epoxy Resin Composites. Transactions of China Electrotechnical Society, 2016, 31(18): 191-198.
[1] Cao Y, Irwin P C, Younsi K. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797-807. [2] Reddy C C. Theoretical maximum limits on power- handling capacity of HVDC cables[J]. IEEE Transa- ctions on Power Delivery, 2009, 24(3): 980-987. [3] Petefish W G, Noddin D B, Hanson D A, et al. High density organic flip chip package substrate tech- nology[C]//48th IEEE Electronic Components & amp; Technology Conference, Seattle WA, 1998: 1089- 1097. [4] Li Z, Okamoto K, Ohki Y, et al. Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of micro-Al 2 O 3 /epoxy com- posite[J]. IEEE Transactions on Dielectric and Elec- trical Insulation, 2010, 17(3): 654-663. [5] Li Zhe, Okamoto K, Ohki Y, et al. The role of nano and micro particles on partial discharge and break- down strength in epoxy composites[J]. IEEE dielec- trics and electrical insulation society, 2011, 18(3): 675-681. [6] Boggs S. A rational consideration of space charge[J]. IEEE Electrical Insulation Magazine, 2004, 20(4): 22-27. [7] 周远翔, 王宁华, 王云杉, 等. 固体电介质空间电荷研究进展[J]. 电工技术学报, 2008, 23(9): 16-25. Zhou Yuanxiang, Wang Ninghua, Wang Yunshan, et al. Review of research on space charge in solid dielectrics[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 16-25. [8] Gallot-Lavallée O, Teyssedre G. Space charge measurement in solid dielectrics by the pulsed electro-acoustic technique[C]//IEEE International Conference on Solid Dielectrics, 2004, 1: 268-271. [9] Li Y, Yasuda M, Takada T. Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(2): 188-195. [10] Maeno T, Futami T, Kusibe H, et al. Measurement of spatial charge distribution in thick dielectrics using the pulsed electroacoustic method[J]. IEEE Transa- ctions on Electrical Insulation, 1988, 23(3): 433-139. [11] 刘文辉, 吴建东, 王俏华, 等. 纳米添加物的粒径对聚合物纳米复合电介质中空间电荷行为的影响 [J]. 中国电机工程学报, 2009, 29(1): 61-66. Liu Wenhui, Wu Jiandong, Wang Qiaohua, et al. Effeet of nano additive size on the space charge behaviour in nanocomposite polymer material[J]. Proceedings of the CSEE, 2009, 29(1): 61-66. [12] 何恩广, 刘庆峰, 尚文宇. 纳米界面性能在电介质科学中的应用[J]. 绝缘材料通讯, 2000, 4(8): 34-37. He Enguang, Liu Qingfeng, Shang Wenyu. Appli- cation of nano-interface performance in dielectric science[J]. Insulating Materials, 2000, 4(8): 34-37. [13] 周远翔, 郭绍伟, 聂琼, 等. 纳米氧化铝对硅橡胶空间电荷特性的影响[J]. 高电压技术, 2010, 36(7): 1605-1611. Zhou Yuanxiang, Guo Shaowei, Nie Qiong, et al. Influences of nano-alumina on the space charge behavior of silicone rubber[J]. High Voltage Engineering, 2010, 36 (7): 1605-1611. [14] 申巍, 曹雯, 吴锴. 环氧/纸复合材料击穿特性及空间电荷的研究[J]. 电工技术学报, 2013, 28(1): 1-6. Shen Wei, Cao Wen, Wu Kai. Study of characteristics of breakdown strength and space charge in epoxy/ paper composite[J]. Transactions of China Electro- technical Society, 2013, 28(1): 1-6. [15] 陈少卿, 彭宗仁, 王霞. 玻璃化温度对环氧树脂空间电荷分布的影响[J]. 电工技术学报, 2011, 26(8): 227-230. Chen Shaoqing, Peng Zongren, Wang Xia. Effects of glass transition temperature on space charge in epoxy resin[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 227-230. [16] Tanaka T, Kozako M, Fuse N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [17] Ajayan P M, Schadler L S, Braun P V. Nano- composite science and technology[M]. John Wiley & Sons, 2006. [18] 卢春莲, 付强. 耐高压绝缘材料的研究现状及进展[J]. 绝缘材料, 2010, 43(3): 32-37. Lu Chunlian, Fu Qiang. Research status and progress of high voltage resistant insulation materials[J]. Insulation Materials, 2010, 43 (3): 32-37. [19] 马传国, 容敏智, 章明秋. 导热高分子复合材料的研究与应用[J]. 材料工程, 2002(7): 40-45. Ma Chuanguo, Rong Minzhi, Zhang Mingqiu. Advances in study of thermal conducting polymers composites and their application[J]. Journal of Material Engineering, 2002(7): 40-45. [20] 徐任信, 崔昌盛, 王钧, 等. 高温高压湿热处理对环氧树脂复合材料电性能的影响[J]. 纤维复合材料, 2008, 25(1): 32-34. Xu Renxin, Cui Changsheng, Wang Jun, et al. Effect of hygrothermal treatment with high temperature and pressure on electrical properties in epoxy com- posite[J]. Fiber Composites, 2008, 25(1): 32-34. [21] 鹿鸣明, 王逸飞, 郭创新, 等. 一种基于PHM考虑老化和设备状态的油浸式变压器故障率模型[J]. 电力系统保护与控制, 2014, 42(18): 66-71. Lu Mingming, Wang Yifei, Guo Chuangxin, et al. Failure rate model for oil-immersed transformer based on PHM concerning aging process and equipment inspection information[J]. Power System Protection and Control, 2014, 42(18): 66-71.