Abstract:When steady waves of electric power system are sampled asynchronously, using discrete Fourier transform to analyze harmonics will generate spectrum leakage and fence effect, which causes measurement errors of harmonic parameters. To further suppress spectral leakage and improve the measurement accuracy of harmonics, a new kind of hybrid convolution windows produced by convolving rectangular windows and cosine windows was proposed. The main lobe width and side lobe attenuation of defined L-order hybrid convolution window were analyzed. Compared with the performance of classical windows, the new windows have faster side lobe attenuation, which can greatly reduce the effects of spectral leakage. The proposed new windows were applied to harmonic analysis, and then the harmonic interpolation algorithm based on L-order hybrid convolution windows was derived. The results show that the new windows have the excellent property of restraining spectral leakage, and the mutual interference between various harmonic components can be reduced effectively. The advantages of this method are also obvious even under noisy conditions. The new algorithm can be used for high-precision measurement of power system harmonics.
孙仲民, 何正友, 臧天磊. 一种混合卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2016, 31(16): 207-214.
Sun Zhongmin, He Zhengyou, Zang Tianlei. A Kind of Hybrid Convolution Window and Its Application in Harmonic Analysis. Transactions of China Electrotechnical Society, 2016, 31(16): 207-214.
[1] 黄纯, 朱智军, 曹一家, 等. 一种电网谐波与间谐波分析新方法[J]. 电工技术学报, 2013, 28(9): 32-39. Huang Chun, Zhu Zhijun, Cao Yijia, et al. A novel power system harmonic and interharmonic analysis method[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 32-39. [2] Spark Y X, Simon X Y. Power system frequency estimation using supervised Gauss-Newton algorithm[J]. Measurement, 2009, 42(1): 28-37. [3] 唐轶, 陈奎, 谷露, 等. 一种高精度快速计算电力谐波参数的方法[J]. 电力系统保护与控制, 2013, 41(5): 43-47. Tang Yi, Chen Kui, Gu Lu, et al. An accurate and fast approach to calculating the power harmonics parameters[J]. Power System Protection and Control, 2013, 41(5): 43-47. [4] International Electrotechnical Commission. IEC 61000-4-7 general guide on harmonics and inter- harmonics, for power supply systems and equipment connected thereto[S]. Geneva, Switzerland, 2002. [5] 罗蛟, 江亚群, 黄纯, 等. 基于DRSC窗递推DFT 算法的电力谐波检测[J]. 电工技术学报, 2013, 28(9): 47-54. Luo Jiao, Jiang Yaqun, Huang Chun, et al. Power system harmonic parameters estimation based on recursive DFT algorithm with DRSC window[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 47-54. [6] Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(2): 113-122. [7] Grandke T. Interpolation algorithms for discrete Fourier transform of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355. [8] Qian H, Zhao R X, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm. IEEE Transactions on Power Delivery, 2007, 22(2): 1064-1069. [9] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J]. 电工技术学报, 1994, 9(2): 53-56. Pan Wen, Qian Yushou, Zhou E. Power harmonics measurement based on windows and interpolated FFT(II) dual interpolated FFT algorithms[J]. Transa- ctions of China Electrotechnical Society, 1994, 9(2): 53-56. [10] 许珉, 杨阳, 陈飞, 等. 基于Nuttall(I)窗的插值FFT算法[J]. 电力系统保护与控制, 2011, 39(23): 44-48. Xu Min, Yang Yang, Chen Fei, et al. An interpolated FFT algorithm based on the Nuttall(I)window[J]. Power System Protection and Control, 2011, 39(23): 44-48. [11] 庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54. Pang Hao, Li Dongxia, Zu Yunxiao, et al. An improved algorithm for harmonic analysis of power system using FFT technique[J]. Proceedings of the CSEE, 2003, 23(6): 50-54. [12] 刘亚梅, 惠锦, 杨洪耕. 电力系统谐波分析的多层DFT插值校正法[J]. 中国电机工程学报, 2012, 32(25): 182-188. Liu Yamei, Hui Jin, Yang Honggeng. Multilayer DFT interpolation correction approach for power system harmonic analysis[J]. Proceedings of the CSEE, 2012, 32(25): 182-188. [13] 惠锦, 杨洪耕. 用于谐波/间谐波分析的奇数频点插值修正法[J]. 中国电机工程学报, 2010, 30(16): 67-72. Hui Jin, Yang Honggeng. An approach for harmonic inter-harmonic analysis based on the odd point interpolation correction[J]. Proceedings of the CSEE, 2010, 30(16): 67-72. [14] 黄冬梅, 龚仁喜, 焦凤昌, 等. 莱夫-文森特窗三谱线插值的电力谐波分析[J]. 电力系统保护与控制, 2014, 42(2): 28-34. Huang Dongmei, Gong Renxi, Jiao Fengchang, et al. Power harmonic analysis based on Rife-Vincent window and triple-spectral-line interpolation[J]. Power System Protection and Control, 2014, 42(2): 28-34. [15] 张介秋, 梁昌宏, 陈砚圃. 一类新的窗函数——卷积窗及其应用[J]. 中国科学E辑, 2005, 35(7): 773- 784. Zhang Jieqiu, Liang Changhong, Chen Yanpu. A new family of windows—convolution windows and their applications[J]. Science in China, Series E: Tech- nological Sciences, 2005, 35(7): 773-784. [16] 曾博, 唐求, 卿柏元, 等. 基于Nuttall自卷积窗的改进FFT谱分析方法[J]. 电工技术学报, 2014, 29(7): 59-66. Zeng Bo, Tang Qiu, Qing Baiyuan, et al. Spectral analysis method based on improved FFT by Nuttall self-convolution window[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 59-66. [17] 温和, 滕召胜, 卿柏元. Hanning自卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2009, 24(2): 164-169. Wen He, Teng Zhaosheng, Qing Baiyuan. Hanning self-convolution windows and its application to harmonic analysis[J]. Transactions of China Electro- technical Society, 2009, 24(2): 164-169.