Abstract:Disturbance direction misjudgments happen due to the network structure, the Gauss noise and monitoring errors. However, the existing power quality disturbance source locating methods have low positioning accuracy. A power quality disturbance location algorithm of particle swarm optimization with monitoring reliability is presented. A new method of monitoring reliability function is also presented, to characterize the accuracy of disturbance direction judgment. Then the particle swarm optimization model is established, as well as the evaluation function is proposed, where the particle swarm iteration is used to search the global optimal solution. The simulations in Matlab show that, the new algorithm can locate the disturbance with parts of disturbance direction misjudgments, and has the advantages of accurate positioning, good convergence and good fault tolerance.
[1] 李国庆, 王鹤, 张慧杰. 微电网中基于逆变电源控制的重要节点电能质量管理方法[J]. 电工技术学报, 2014, 29(2): 177-184. Li Guoqing, Wang He, Zhang Huijie. Power quality management method based on inverter source control for important node in microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 177- 184. [2] Weng Guoqing, Zhou Wenwei, Jun Qi. Research on comprehensive evaluation of regional power quality based on multistage extension method[C]//Asia- Pacific Power and Energy Engineering Conference, Washington DC, 2011: 1-4. [3] 李正明, 施诗, 潘天红, 等. 基于灰色关联度和理想解法的电能质量综合评估方法[J]. 电力系统保护与控制, 2014, 42(6): 14-19. Li Zhengming, Shi Shi, Pan Tianhong, et al. A synthetic power quality assessment based on grey correlation analysis and TOPSIS method[J]. Power System Protection and Control, 2014, 42(6): 14-19. [4] 黄南天, 徐殿国, 蔡国伟. 采用自适应广义S变换与概率神经网络的电能质量扰动识别[J]. 电工技术学报, 2013, 28(增1): 209-216. Huang Nantian, Xu Dianguo, Cai Guowei. Identi- fication of power quality disturbances based on adaptive generalized S-transform and probabilistic neural networks[J]. Transactions of China Electro- technical Society, 2013, 28(S1): 209-216. [5] 张文涛, 王成山. 基于改进扰动功率和能量法的暂态扰动定位[J]. 电力系统自动化, 2007, 31(8): 32- 35. Zhang Wentao, Wang Chengshan. Transient distur- bances location based on improved disturbance power and energy[J]. Automation of Electric Power Systems, 2007, 31(8): 32-35. [6] Won D J, Chung I Y, Kim J M, et al. A new algorithm to locate power-quality event source with improved realization of distributed monitoring scheme[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1641- 1647. [7] 翁国庆, 张有兵. 网络化电能质量监测与分析系统的设计[J]. 电力系统自动化, 2008, 32(15): 79-83. Weng Guoqing, Zhang Youbing. Design of a net- worked power quality monitoring and analysis system[J]. Automation of Electric Power Systems, 2008, 32(15): 79-83. [8] 张有兵, 翁国庆, 曹一家. 网络化电能质量监测系统中的配电线载波通信[J]. 电工技术学报, 2010, 25(6): 116-122. Zhang Youbing, Weng Guoqing, Cao Yijia. Distribution line carrier communication in networked power quality monitoring system[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 116- 122. [9] Wang Jing, Shen Yueyue. Study on the classification method of power quality disturbances based on generalized S-transform and multi-lay SVM classifier[C]//International Conference on Sustain- able Power Generation and Supply, Nanjing, 2009: 1-4. [10] 吴兆刚, 李唐兵, 姚建刚, 等. 基于小波和改进神经树的电能质量扰动分类[J]. 电力系统保护与控制, 2014, 42(24): 86-92. Wu Zhaogang, Li Tangbing, Yao Jiangang, et al. Power quality disturbance classification based on a wavelet and improved neural tree[J]. Power System Protection and Control, 2014, 42(24): 86-92. [11] 徐文远, 雍静. 电力扰动数据分析学—电能质量监测数据的新应用[J]. 中国电机工程学报, 2013, 33(19): 93-101. Xu Wenyuan, Yong Jing. Power disturbance data analytics new application of power quality monitor- ring data[J]. Proceedings of the CSEE, 2013, 33(19): 93-101. [12] 徐方维, 杨洪耕, 叶茂清. 基于改进S变换的电能质量扰动分类[J]. 中国电机工程学报, 2012, 32(4): 77-84. Xu Fangwei, Yang Honggeng, Ye Maoqing. Classifi- cation for power quality short duration disturbances based on generalized S-transform[J]. Proceedings of the CSEE, 2012, 32(4): 77-84. [13] 陈丽, 王硕, 孔维功. 基于改进S变换的复合电压暂降源识别特征分析[J]. 电力系统保护与控制, 2014, 42(4): 27-33. Chen Li, Wang Shuo, Kong Weigong. Method to identify composite voltage sag disturbance sources based on generalized S-transform[J]. Power System Protection and Control, 2014, 42(4): 27-33. [14] Dexin M A, Pengmin X U, Jian M A. An efficient node partitionclustering protocol using niching particle swarm optimization[C]//IEEE 4th Inter- national Conference on Software Engineering and Service Science, Beijing, 2013, 5: 644-647. [15] 程泽, 董梦男, 杨添剀, 等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报, 2014, 29(9): 245-252. Cheng Ze, Dong Mengnan, Yang Tiankai, et al. Extraction of solar cell model parameters based on self-adaptive chaos particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 245-252. [16] 栗然, 唐凡, 刘英培, 等. 基于自适应变异粒子群算法的双馈风电机组等值建模[J]. 电力系统自动化, 2012, 36(4): 22-27. Li Ran, Tang Fan, Liu Yingpei, et al. Equivalent model of doubly-fed wind turbine generator systems based on auto mutation particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2012, 36(4): 22-27. [17] 周超, 田立军. 基于粒子群优化算法的电压暂降监测点优化配置[J]. 电工技术学报, 2014, 29(4): 181- 187. Zhou Chao, Tian Lijun. An optimum allocation method of voltage sag monitoring nodes based on particle swarm optimization algorithm[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(4): 181-187.