Control Strategies of Flexible Power Supply and Distribution Scheme for Large Capacity AC Electric Arc Furnace
Zhao Chongbin1, Jiang Qirong1, Guo Xu1, Liu Dong2
1. State Key Laboratory of Power System and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China; 2. Capital Engineering & Research Incorporation Co. Ltd Beijing 100176 China
Abstract:Reasonable power supply and distribution technology is the key to control the load energy balance of large capacity AC electric arc furnaces (EAF). The novel flexible power supply and distribution scheme with modular power electronic power units can mitigate the influence of AC EAF operation on power quality of the system significantly. By improving its multi-link control strategies, the smelting performance of AC EAF can be further improved and the frequency impact on the system can be reduced as well. Firstly, the voltage control mode (VCM) is replaced by the current control mode (CCM) of the inverter stage in the power unit to coordinate with the inherent electrode regulation, which improves the bandwidth of the control system. Then the control strategies for multiple operating conditions of the novel scheme are designed to increase the flexibility in practical application and the friendliness to the system. Furthermore, the modulation strategy of the inverter stage is improved to suppress the potential high-frequency common mode circuit. Finally, the effectiveness of various control strategies is verified by simulation based on the actual parameters, which can give full play to the advantages of software and hardware dominated by power electronics in the novel scheme.
赵崇滨, 姜齐荣, 郭旭, 刘东. 大容量交流电弧炉柔性供配电方案控制策略[J]. 电工技术学报, 2021, 36(16): 3386-3399.
Zhao Chongbin, Jiang Qirong, Guo Xu, Liu Dong. Control Strategies of Flexible Power Supply and Distribution Scheme for Large Capacity AC Electric Arc Furnace. Transactions of China Electrotechnical Society, 2021, 36(16): 3386-3399.
[1] 中国电力企业联合会. 2021年1—3月电力消费情况[EB/OL]. https://www.cec.org.cn/detail/index.html?3-295344, 2021-04-15. [2] 王丰华. 电弧炉建模研究及其应用[D]. 上海: 上海交通大学, 2006. [3] 万聪聪, 田翠华, 陈柏超, 等. 基于故障限流器的电弧炉电压波动和闪变抑制研究[J]. 电力电容器与无功补偿, 2019, 40(4): 126-131. Wan Congcong, Tian Cuihua, Chen Baichao, et al.Study on voltage fluctuation and flicker suppression of electric arc furnace based on fault current limiter[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(4): 126-131. [4] Pires I A, Machado A A P, De Jesus Cardoso Filho B. Mitigation of electric arc furnace transformer inrush current using soft-starter-based controlled energi- zation[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3909-3918. [5] Samet H, Ghanbari T, Ghaisari J.Maximum perfor- mance of electric arc furnace by optimal setting of the series reactor and transformer taps using a nonlinear model[J]. IEEE Transactions on Power Delivery, 2015, 30(2): 764-772. [6] Łukasik Z, Olczykowski Z.Estimating the impact of arc furnaces on the quality of power in supply systems[J]. Energies, 2020, 13(6): 1462. [7] Suh Y, Park H, Lee Y, et al.A power conversion system for AC furnace with enhanced arc stability[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2526-2535. [8] 吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC- TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24(1): 137-144. Lü Zhipeng, Wu Ming, Song Zhenhao, et al.Com- prehensive evaluation of power quality on CRITIC- TOPSIS method[J]. Electric Machines and Control, 2020, 24(1): 137-144. [9] 彭卉, 邹舒, 付永生, 等. 冲击负荷接入电网的电能质量分析与治理方案研究[J]. 电力系统保护与控制, 2014, 42(1): 54-61. Peng Hui, Zou Shu, Fu Yongsheng, et al.Research of the power quality problem and treatment scheme for impact loads connected into Chongqing power system[J]. Power System Protection and Control, 2014, 42(1): 54-61. [10] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.Analysis on research status of parallel inverters control technologies for AC/DC distribution net- work[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4226-4241. [11] 陶顺, 罗超, 肖湘宁, 等. 电流物理分量理论改进方法及其在电能质量评估中的应用[J]. 电工技术学报, 2019, 34(9): 1960-1970. Tao Shun, Luo Chao, Xiao Xiangning, et al.A modified current physical components theory and its application in power quality assessment[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(9): 1960-1970. [12] 赵崇滨, 姜齐荣, 刘东, 等. 基于大容量电力电子功率变换的交流电弧炉柔性供配电方案[J]. 电力系统自动化, 2020, 44(21): 89-98. Zhao Chongbin, Jiang Qirong, Liu Dong, et al.Flexible power supply and distribution scheme for AC electric arc furnace based on large-capacity Power electronics power conversion[J]. Automation of Electric Power Systems, 2020, 44(21): 89-98. [13] 马文忠, 古丽帕丽·赛力江, 周冠宇, 等. 向海岛电网供电的MMC-HVDC有源/无源切换控制策略[J].电力系统保护与控制, 2020, 48(21): 157-165. Ma Wenzhong, Gu Lipali·Sailijiang, Zhou Guanyu, et al. Active/passive switching control strategy for MMC-HVDC connected to an island power grid[J]. Power System Protection and Control, 2020, 48(21): 157-165. [14] Kim S, Jeong J J, Kim K, et al.Arc stability index using phase electrical power in AC electric arc furnace[C]//13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, 2013: 1725-1728. [15] Morati M, Girod D, Terrien F, et al.Industrial 100MVA EAF voltage flicker mitigation using VSC- based STATCOM with improved performance[J]. IEEE Transactions on Power Delivery, 2016, 31(6): 2494-2501. [16] 林海雪. 电弧炉的有功功率冲击对发电机组的影响[J]. 中国电机工程学报, 2014, 34(增刊1): 232-238. Lin Haixue.Influence of active power impact caused by EAF on the generating sets[J]. Proceedings of the CSEE, 2014, 34(S1): 232-238. [17] Cano-Plata E A, Ustariz-Farfán A J, Arango-Lemoine C. EAF arc stability through the use of UPFCs[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6624-6632. [18] 任碧莹, 赵欣荣, 孙向东, 等. 不平衡负载下基于改进下垂控制策略的组合式三相逆变器控制[J]. 电网技术, 2016, 40(4): 1163-1168. Ren Biying, Zhao Xinrong, Sun Xiangdong, et al.Improved droop control based three-phase combined inverters for unbalanced load[J]. Power System Tech- nology, 2016, 40(4): 1163-1168. [19] 权建洲, 尹周平, 熊有伦, 等. 大功率组合式三相逆变器对称输出控制[J]. 电工技术学报, 2008, 23(8): 80-85. Quan Jianzhou, Yin Zhouping, Xiong Youlun, et al.Symmetrical output control for three-phase high power combined inverter[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 80-85. [20] 吴学智, 刘海晨, 唐芬, 等. 孤岛下基于负序虚拟导纳的微网不平衡控制策略[J]. 电工技术学报, 2019, 34(15): 3222-3230. Wu Xuezhi, Liu Haichen, Tang Fen, et al.Negative sequence virtual admittance based unbalance control strategy in islanded mode microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3222-3230. [21] 刘颜, 董光冬, 张方华. 反激变换器共模噪声的抑制[J]. 电工技术学报, 2019, 34(22): 4795-4803. Liu Yan, Dong Guangdong, Zhang Fanghua.Reducing common mode noise in flyback converter[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(22): 4795-4803. [22] 陈晓威, 董纪清. 有源EMI滤波器研究现状综述[J]. 电气技术, 2017, 18(2): 5-9, 40. Chen Xiaowei, Dong Jiqing.The current state of active EMI filter were reviewed[J]. Electrical Tech- nology, 2017, 18(2): 5-9, 40. [23] Jiang Dong, Shen Zewei, Wang Fang.Common-mode voltage reduction for paralleled inverters[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 3961-3974. [24] 易小强, 裴雪军, 侯婷, 等. 基于DSP组合式三相逆变电源单极倍频SPWM研究[J]. 电力电子技术, 2007(6): 77-79, 101. Yi Xiaoqiang, Pei Xuejun, Hou Ting, et al.Study of single pole double frequency SPWM of combinatorial three phase inverter on DSP[J]. Power Electronics, 2007(6): 77-79, 101. [25] Tseng K J, Wang Y, Vilathgamuwa D M.An experimentally verified hybrid Cassie-Mayr electric arc model for power electronics simulations[J]. IEEE Transactions on Power Electronics, 1997, 12(3): 429-436. [26] Guardado J L, Maximov S G, Melgoza E, et al.An improved arc model before current zero based on the combined Mayr and Cassie arc models[J]. IEEE Transa- ctions on Power Delivery, 2005, 20(1): 138-142. [27] 张宝林. 电弧炉起弧阶段控制策略的研究[D]. 沈阳: 东北大学, 2013. [28] Calligaro S, Petrella R.Digital current control of electric arc furnace by parallel modular three-phase IGBT inverters[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, 2019: 1963-1970. [29] NB/T 41008-2017. 交流电弧炉供电技术导则: 电能质量评估B/T 41008-2017. 交流电弧炉供电技术导则: 电能质量评估[S]. 北京: 国家能源局, 2017.