The Lithium-Ion Battery Low Temperature Stress Based on Different Degradation Paths
Sun Bingxiang1, Jiang Jiuchun1, Han Zhiqiang1,2, Ma Zeyu1, Zheng Fangdan1
1. National Active Distribution Network Technology Research Center Collaborative Innovation Center of Electric Vehicles in Beijing Beijing Jiaotong University Beijing 100044 China; 2. Beijing Electric Vehicle Co. Ltd Beijing 102606 China
Abstract:Lithium power battery is usually impacted by low temperature in a particular situation, and its low temperature stress is different with that in initial condition. Taken 35 Ah composite battery as an example, work range of the battery was divided by the transformation curve of the incremental capacity analysis based on different reaction stages of battery charging and discharging process. By aging the batteries at different SOC range, this paper traced the changes of electrochemical properties and analyzed degradation mechanism. Under 0℃ environment, the stress differences under low temperature of batteries which were degraded through different paths, was analyzed using C/3, 1C, 3C/2, 2C and 5C/2 currents to impact the aging cells by charging and discharging respectively. The result showed that the power battery produced obviously different degradation paths when it cycled at different SOC ranges. There is no mapping relation and consistency between low temperature degradation and cycling degradation. The conclusion provides the basis for battery pack lifetime analysis and second battery matching.
孙丙香, 姜久春, 韩智强, 马泽宇, 郑方丹. 基于不同衰退路径下的锂离子动力电池低温应力差异性[J]. 电工技术学报, 2016, 31(10): 159-167.
Sun Bingxiang, Jiang Jiuchun, Han Zhiqiang, Ma Zeyu, Zheng Fangdan. The Lithium-Ion Battery Low Temperature Stress Based on Different Degradation Paths. Transactions of China Electrotechnical Society, 2016, 31(10): 159-167.
[1] 高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45. Gao Fei, Yang Kai, Hui Dong, et al. Cycle-life energy analysis of LiFePO 4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45. [2] Omar N, Monem M A, Firouz Y, et al. Lithium iron phosphate based battery-assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113(1): 1575-1585. [3] Liu Guangming, Ouyang Minggao, Lu Languang, et al. Online monitoring of lithium-ion battery aging effects by internal resistance estimation in electric vehicles[C]//Proceedings of the 31st Chinese Control Conference, Hefei, 2012: 6851-6855. [4] 连湛伟, 石欣, 克潇, 等. 电动汽车充换电站动力电池全寿命周期在线检测管理系统[J]. 电力系统保护与控制, 2014, 42(12): 137-142. Lian Zhanwei, Shi Xin, Ke Xiao, et al. The whole life cycle on-line detection and management system of power battery in the electric vehicle charging and exchanging station[J]. Power System Protection and Control, 2014, 42(12): 137-142. [5] 龚敏明, 时玮, 张言茹, 等. 纯电动公交车锂离子动力电池的使用条件控制[J]. 吉林大学学报(工学版), 2014, 44(4): 1081-1087. Gong Minming, Shi Wei, Zhang Yanru, et al. Oper- ating conditions control of large format LiMn 2 O 4 battery for electric bus[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1081-1087. [6] 雷治国, 张承宁, 李军求, 等. 电动车用锂离子电池低温性能研究[J]. 汽车工程, 2013, 35(10): 927-933. Lei Zhiguo, Zhang Chengning, Li Junqiu, et al. A study on the low-temperature performance of lithium- ion battery for electric vehicles[J]. Automotive Engineering, 2013, 35(10): 927-933. [7] Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications III. Effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electrochemical Society, 2013, 160(1): 191-199. [8] Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896. [9] Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140. [10] 陈大分, 姜久春, 王占国, 等. 动力锂离子电池分布参数等效电路模型研究[J]. 电工技术学报, 2013, 28(7): 169-176. Chen Dafen, Jiang Jiuchun, Wang Zhanguo, et al. Research on distribution parameters equivalent- circuit model of power lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 169-176. [11] 马泽宇, 姜久春, 张维戈, 等. 锂离子动力电池热老化的路径依赖性研究[J]. 电工技术学报, 2014, 29(5): 221-227. Ma Zeyu, Jiang Jiuchun, Zhang Weige, et al. Research on path dependence of large format LiMn 2 O 4 battery degradation in thermal aging[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 221-227. [12] 王震坡, 孙逢春, 林程. 不一致性对动力电池组使 用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 577-580. Wang Zhenpo, Sun Fengchun, Lin Cheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 577-580. [13] 罗玉涛, 张智明, 赵克刚. 一种集散式动力电池组动态均衡管理系统[J]. 电工技术学报, 2008, 23(8): 131-136, 142. Luo Yutao, Zhang Zhiming, Zhao Kegang. A novel distributed equilibrium and management system of dynamic battery pack[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 131-136,142. [14] 时玮, 姜久春, 李索宇, 等. 磷酸铁锂电池SOC估算方法研究[J]. 电子测量与仪器学报, 2010, 24(8): 769-774. Shi Wei, Jiang Jiuchun, Li Suoyu, et al. Research on SOC estimation for LiFePO 4 Li-ion batteries[J]. Journal of Electronic Measurement and Instrument, 2010, 24(8): 769-774. [15] 马泽宇, 姜久春, 王占国, 等. 基于相变特性的石墨负极磷酸铁锂电池SOC估算方法研究[J]. 汽车工程, 2014, 36(12): 1439-1444. Ma Zeyu, Jiang Jiuchun, Wang Zhanguo, et al. Research on SOC estimation for graphite negative electrode LiFePO 4 Li-ion batteries based on phase transformations characteristics[J]. Automotive Engin- eering, 2014, 36(12): 1439-1444. [16] USABC Manual Revision2, Electric Vehicle Battery Test Procedures Manual[Z]. 1996. [17] Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: initial characterizations[J]. Journal of Power Sources, 2011, 196(23): 10328-10335. [18] Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part Ⅱ: degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. [19] Dubarry M, Truchot C, Liaw B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219(12): 204-216.