The Expected Model and Algorithm of Multi-Objective Transmission Network Planning Considering the Uncertainty of Wind Power
Hu Yuan1, Bie Zhaohong1, Ning Guangtao2, Gao Yujie2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Hainan Power Grid Corporation Haikou 570203 China
Abstract:This paper presented a three-point estimation method to calculate the probabilistic power flow, considering the uncertainty of wind power in multi-objective transmission network expansion planning. Herein, the power outputs of wind farm were sampled, and the uncertain multi-objective transmission network planning model was transformed into a solvable deterministic model. Compared with other algorithms of probabilistic power flow, such as algorithms based on Monte Carlo simulation and analytical method, the presented method needs less input information, and can easily combine with the multi-objective transmission network planning model. Besides, this method also has the advantages of low computational amount, high accuracy and wide generalization. Therefore, the presented method is effective to deal with the uncertainty of wind power in transmission network planning. Finally, the IEEE 24-bus test system was adopted to verify the presented method and algorithm.
胡源, 别朝红, 宁光涛, 高玉洁. 计及风电不确定性的多目标电网规划期望值模型与算法[J]. 电工技术学报, 2016, 31(10): 168-175.
Hu Yuan, Bie Zhaohong, Ning Guangtao, Gao Yujie. The Expected Model and Algorithm of Multi-Objective Transmission Network Planning Considering the Uncertainty of Wind Power. Transactions of China Electrotechnical Society, 2016, 31(10): 168-175.
[1] Maghouli P, Hosseini S H, Buygi M O, et al. A multi-objective framework for transmission expan- sion planning in deregulated environments[J]. IEEE Transactions on Power Systems, 2009, 24(2): 1051- 1061. [2] Moeini A M, Abbaspour A, Fotuhi F M. Incor- porating large-scale distant wind farms in probabi- listic transmission expansion planning part I: theory and algorithm[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1585-1593. [3] Hu Y, Bie Z, Ding T, et al. An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning[J]. Applied Energy, 2015, 167: 280-293. [4] Cui X, Li W, Ren X, et al. Review of transmission planning with large-scale wind power integration[C]// Asia-Pacific Symposium on Electromagnetic Com- patibility, Sentosa, Singapore, 2012: 285-288. [5] Chompoo I C, Lee W J, Fuangfoo P, et al. System impact study for the interconnection of wind gener- ation and utility system[J]. IEEE Transactions on Industry Applications, 2005, 41(1): 163-168. [6] 朱星阳, 张建华, 刘文霞, 等. 风电并网引起电网电压波动的评价方法及应用[J]. 电工技术学报, 2013, 28(5): 88-98. Zhu Xingyang, Zhang Jianhua, Liu Wenxia, et al. Evaluation methodology and its application of vol- tage fluctuation in power network caused by inter- connected wind power[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 88-98. [7] 王深哲, 高山, 李海峰, 等. 含风电接入的电网规划方案电能质量评估[J]. 电工技术学报, 2013, 28(8): 56-65. Wang Shenzhe, Gao Shan, Li Haifeng, et al. Evaluation of power quality in grid planning scheme with wind power integration[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 56-65. [8] 袁越, 吴博文, 李振杰, 等. 基于多场景概率的含大型风电场的输电网柔性规划[J]. 电力自动化设备, 2009, 29(10): 8-12. Yuan Yue, Wu Bowen, Li Zhenjie, et al. Flexible planning of transmission system with large wind farm based on multi-scenario probability[J]. Electric Power Automation Equipment, 2009, 29(10): 8-12. [9] 陈雁. 含大规模风电场电力系统的运行与规划方法研究[D]. 武汉: 华中科技大学, 2012. [10] 杨欢, 邹斌. 含相关性随机变量的概率潮流三点估计法[J]. 电力系统自动化, 2012, 36(15): 51-56. Yang Huan, Zou Bin. A three-point estimate method for solving probabilistic power flow problems with correlated random variables[J]. Automation of Elec- tric Power System, 2012, 36(15): 51-56. [11] Yu H, Chung C Y, Wong K P, et al. A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1568-1576. [12] Orfanos G A, Georgilakis P, Hatziargyriou N D. Transmission expansion planning of systems with increasing wind power integration[J]. IEEE Transa- ctions on Power Systems, 2013, 28(2): 1355-1362. [13] 朱星阳, 刘文霞, 张建华, 等. 电力系统随机潮流及其安全评估应用研究综述[J]. 电工技术学报, 2013, 28(10): 257-270. Zhu Xingyang, Liu Wenxia, Zhang Jianhua, et al. Reviews on power system stochastic load flow and its applications in safety evaluation[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 257- 270. [14] 艾小猛, 文劲宇, 吴桐, 等. 基于点估计和Gram- Charlier展开的含风电电力系统概率潮流实用算法[J]. 中国电机工程学报, 2013, 33(16): 16-22. Ai Xiaomeng, Wen Jinyu, Wu Tong, et al. A practical algorithm based on point estimate method and Gram-Charlier expansion for probabilistic load flow calculation of power systems incorporating wind power[J]. Proceedings of the CSEE, 2013, 33(16): 16-22. [15] 王文博. 基于点估计法的概率性节点电价研究[D]. 北京: 华北电力大学, 2012. [16] 曲福娣. 基于点估计法的电力系统随机潮流计算方法[D]. 吉林: 东北电力大学, 2011. [17] 吴巍, 汪可友, 韩蓓, 等. 基于Pair Copula的随机潮流三点估计法[J]. 电工技术学报, 2015, 30(9): 121-128. Wu Wei, Wang Keyou, Han Bei, et al. Pair copula based three-point estimate method for probabilistic load flow calculation[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 121-128. [18] Morales J M, Perez R J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transa- ctions on Power Systems, 2007, 22(4): 1594-1601. [19] 王秀丽, 李淑慧, 陈皓勇, 等. 基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J]. 中国电机工程学报, 2006, 26(12): 11-15. Wang Xiuli, Li Shuhui, Chen Haoyong, et al. Multi-objective and multi-district transmission planning based on NSGA-II and cooperative co-evolutionary algorithm[J]. Proceedings of the CSEE, 2006, 26(12): 11-15. [20] 王茜, 张粒子. 采用NSGA-Ⅱ混合智能算法的风电场多目标电网规划[J]. 中国电机工程学报, 2011, 31(19): 17-24. Wang Qian, Zhang Lizi. Multi-objective transmission planning associated with wind farms applying NSGA-II hybrid intelligent algorithm[J]. Proceedings of the CSEE, 2011, 31(19): 17-24.