Abstract:Wind and photovoltaic generations are important units of a microgrid. Considering that the effects of wind and irradiance on the microgrid are of certain correlation, forecasting the joint probability distribution of power flow can reduce the impact of varied wind speed and irradiance on the operation of the microgrid and provides the theory base for the energy management in a microgrid. The deterministic power flow is forecasted firstly based on the forecasting of wind and photovoltaic generations, and then Markov chain and Latin hypercube sampling are combined to forecast the conditional and unconditional joint probability distribution of power flow in the microgrid. The results show that the confidence interval calculated by the former is more valuable, which provides a theoretical basis for further analyzing and optimizing system operation.
茆美琴, 周松林, 苏建徽. 基于风光联合概率分布的微电网概率潮流预测[J]. 电工技术学报, 2014, 29(2): 55-63.
Mao Meiqin, Zhou Songlin, Su Jianhui. Probabilistic Power Flow Forecasting of Microgrid Based on Joint Probability Distribution about Wind and Irradiance. Transactions of China Electrotechnical Society, 2014, 29(2): 55-63.
[1] Hatziargyriou N D, Dimeas A, Tsikalakis A G, et al. Management of microgrids in market environment[C]. International Conference on Future Power Systems. 2005: 1-7. [2] 孙孝峰, 吕庆秋. 低压微电网逆变器频率电压协调控制[J]. 电工技术学报, 2012, 27(8): 77-84. Sun Xiaofeng, Lü Qingqiu. Improved PV control of grid-connected inverter in low voltage microgrid[J]. Transaction of China Electrotechnical Society, 2012, 27(8): 77-84. [3] 刘杨华, 吴政球, 林舜江. 孤岛运行的微电网三相不平衡潮流计算方法研究[J]. 湖南大学学报, 2009, 36(7): 36-40. Liu Yanghua, Wu Zhengqiu, Lin Shunjiang. Research on unbalanced three phase power flow calculation method in islanding microgrid[J]. Journal of Hunan University, 2009, 36(7): 36-40. [4] 周松林, 茆美琴, 苏建徽. 考虑风力发电随机性的微电网潮流预测[J]. 中国电机工程学报, 2013, 33(22): 26-34. Zhou Songlin, Mao Meiqin, Su Jianhui. Power flow forecasting of microgrid considering the randomness of wind power[J]. Proceedings of the CSEE, 2013, 33(22): 26-34. [5] 王成山, 郑海峰, 谢莹华. 计及分布式发电的配电系统随机潮流计算[J]. 电力系统自动化, 2005, 29(24): 39-44. Wang Chengshan, Zheng Haifeng, Xie Yinghua. Probabilistic power flow containing distributed generation in distribution system[J]. Automation of Electric Power Systems, 2005, 29(24): 39-44. [6] 余昆, 曹一家, 陈星莺, 等. 含分布式电源的地区电网动态概率潮流计算[J]. 中国电机工程学报, 2011, 31(1): 20-25. Yu Kun, Cao Yijia, Chen Xingying, et al. Dynamic probability power flow of district grid containing distributed generation[J]. Proceedings of the CSEE, 2011, 31(1): 20-25. [7] 孙国强, 卫志农, 翟玮星. 基于RVM与ARMA误差校正的短期风速预测[J]. 电工技术学报, 2012, 27(8): 188-193. Sun Guoqiang, Wei Zhinong, Zhai Weixing. Short term wind speed forecasting based on RVM and ARMA error correcting[J]. Transaction of China Electrotechnical Society, 2012, 27(8): 188-193. [8] 夏冬, 吴俊勇, 贺电. 一种新型的风电功率预测综合模型[J]. 电工技术学报, 2011, 26(1): 262-266. Xia Dong, Wu Junyong, He Dian. A novel combined model for wind power forecasting based on maximum entropy principle[J]. Transaction of China Electrote- chnical Society, 2011, 26(1): 262-266. [9] 陈昌松, 段善旭, 殷进军. 基于神经网络的光伏阵列发电预测模型的设计[J] 电工技术学报, 2009, 24(9): 153-158. Chen Changsong, Duan Shanxu, Yin Jinjun. Design of photovoltaic array power forecasting model based on neutral network[J]. Transaction of China Electrote- chnical Society, 2009, 24(9): 153-158. [10] 王敏. 分布式电源的概率建模及其对电力系统的影响[D]. 合肥: 合肥工业大学, 2010. [11] 傅美平, 马红伟, 毛建容. 基于相似日和最小二乘支持向量机的光伏发电短期预测[J]. 电力系统保护与控制, 2012, 40(16): 65-69. Fu Meiping, Ma Hongwei, Mao Jianrong. Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power System Protection and Control, 2012, 40(16): 65-69. [12] 丁明, 吴兴龙, 陆巍. 含多个不对称光伏并网系统的配电网三相随机潮流计算[J]. 电力系统自动化, 2012, 36(16): 47-51. Ding Ming, Wu Xinglong, Lu Wei. Three-phase probabilistic power flow calculation in distribution systems with multiple unsymmetrical grid-connected photovoltaic systems[J]. Automation of Electric Power System, 2012, 36(16): 47-51. [13] Roy Billinton, Life Fellow. Incorporating wind power in generating capacity reliability evaluation using different models[J]. IEEE Transactions of Power Systems, 2011, 26(4): 2509-2517. [14] Huang D, Billinton R. Effects of wind power on bulk system adequacy evaluation using the well-being analysis framework[J]. IEEE Transactions of Power Systems, 2009, 24(3): 1232-1240. [15] 丁明, 徐宁舟. 基于马尔可夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术, 2011, 35(1): 152-157. Ding Ming, Xu Ningzhou. A method to forecast short-term output power of photovoltaic generation system based on markov chain[J]. Power System Technology, 2011, 35(1): 152-157. [16] 于晗 钟志勇, 黄杰波. 采用拉丁超立方采样的电力系统概率潮流计算方法[J]. 电力系统自动化, 2009, 33(21): 32-35. Yu Han, Chung Chiyong, Wong Kitpo. A probabilistic load flow calculation method with latin hypercube sampling[J]. Automation of Electric Power Systems, 2009, 33(21): 32-35. [17] 王松岩, 于继来. 风速与风电功率的联合条件概率预测方法[J]. 中国电机工程学报, 2011, 31(7): 7-15. Wang Songyan, Yu Jilai. Joint conditions probability forecast method for wind speed and wind power[J]. Proceedings of the CSEE, 2011, 31(7): 7-15. [18] Rudion K, Styczynski Z A, Hatziargyriou N, et al. Development of benchmarks for low and medium voltage distribution networks with high penetration of dispersed generation[C]. 3rd International Symposium on Modern Electric Power Systems, Wroclaw, 6-8 Sep, 2006.