Low Frequency Oscillation Modal Parameter Identification Using Resonance-Based Sparse Signal Decomposition and SSI Method
Zhao Yan1, 2, Li Zhimin1, Li Tianyun2
1. School of Electrical and Automation Engineering Harbin Institute of Technology Harbin 150001 China; 2. Northeast Dianli University Jilin 132012 China
Abstract:This paper proposed a new method based on resonance-based sparse signal decom- position and stochastic subspace identification (SSI) for oscillation mode identification. Complex signals can be separated by predictable Q-factors. Firstly, LFO signals were decomposed into high-resonance component, low-resonance component and residual by resonance-based sparse signal decomposition. LFO signal is the output of under-damped system with high-resonance property at a specific frequency. The high-resonance component is extractive LFO, and the residual is the most colored Gaussian noise. Secondly, modal parameter of high-resonance component is identified by SSI. After that, high-accuracy detection for modal parameter identification is achieved. Examples have proved the effectiveness of the method.
赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144.
Zhao Yan, Li Zhimin, Li Tianyun. Low Frequency Oscillation Modal Parameter Identification Using Resonance-Based Sparse Signal Decomposition and SSI Method. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144.
[1] 智勇, 王官宏, 肖洋, 等. 750kV线路投运后甘肃电网动态稳定性分析[J]. 电力系统保护与控制, 2011, 39(3): 114-118. Zhi Yong, Wang Guanhong, Xiao Yang, et al. Dynamic stability analysis of Gansu power grid after 750kV lines was put into operation[J]. Power System Protection and Control, 2011, 39(3): 114-118. [2] 李勋, 龚庆武, 贾晶晶, 等. 基于原子稀疏分解的低频振荡模态参数辨识方法[J]. 电工技术学报, 2012, 27(9): 124-133. Li Xun, Gong Qingwu, Jia Jingjing, et al. Atomic sparse decomposition based identification method for low-frequency oscillation modal parameters[J]. Trans- actions of China Electrotechnical Society, 2012, 27(9): 124-133. [3] 贾勇, 何正友. 基于受扰轨迹的低频振荡分析方法综述[J]. 电力系统保护与控制, 2008, 40(11): 140-148. Jia Yong, He Zhengyou. Review on analysis methods for low frequency oscillations based on disturbed trajectories[J]. Power System Protection and Control, 2008, 40(11): 140-148. [4] 汪永华, 王正风. 电网动态监测预警与辅助决策系统的应用与发展[J]. 电力系统保护与控制, 2010, 38(10): 70-74, 105. Wang Yonghua, Wang Zhengfeng. Application and development of dynamic monitoring preventive alarm and auxiliary decision system[J]. Power System Protection and Control, 2010, 38(10): 70-74, 105. [5] 马燕峰, 赵书强. 基于在线辨识和区域极点配置法的电力系统低频振荡协调阻尼控制[J]. 电工技术学报, 2012, 27(9): 117-123. Ma Yanfeng, Zhao Shuqiang. Coordinated damping control of power systems low-frequency oscillation based on on-line identification and region poles assignment[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 117-123. [6] 戚军, 江全元, 曹一家. 采用时滞广域测量信号的区间低频振荡阻尼控制器设计[J]. 电工技术学报, 2009, 24(6): 154-159. Qi Jun, Jiang Quanyuan, Chao Yijia. Design of damping controller for inter-area low-frequency oscillation using time-delay wide-area measurements[J]. Transactions of China Electrotechnical Society, 2009, 24(6): 154-159. [7] Trudnowski D J. Making prony analysis more accurate using multiple signals[J]. IEEE Transacrions on Power Systems, 1999, 14(1): 226-231. [8] Hauer J F. Application of Prony analysis to the determination of modal content and equivalent models for measured power system response[J]. IEEE Trans- actions on Power Systems, 1991, 6(3): 1062-1068. [9] 张静, 徐政, 王峰, 等. TLS-ESPRIT算法在低频振荡分析中的应用[J]. 电力系统自动化, 2007, 31(20): 84-88. Zhang Jing, Xu Zheng, Wang Feng, et al. TLS- ESPRIT based method for low frequency oscillation analysis in power system[J]. Automation of Electric Power Systems, 2007, 31(20): 84-88. [10] Ni J M, Shen C, Liu F. Estimation of the electro- mechanical characteristics of power systems based on a revised stochastic subspace method and the stabilization diagram[J]. Science China Techno- logical Sciences, 2012, 55(6): 1677-1687. [11] 蔡国伟, 杨德友, 张俊丰, 等. 基于实测信号的电力系统低频振荡模态辨识[J]. 电网技术, 2011, 35(1): 59-65. Cai Guowei, Yang Deyou, Zhang Junfeng, et al. Mode identification of power system low-frequency oscillation based on measured signal[J]. Power System Technology, 2011, 35(1): 59-65. [12] 李天云, 谢家安, 张方彦, 等. HHT 在电力系统低频振荡模态参数提取中的应用[J]. 中国电机工程学报, 2007, 27(28): 79-83. Li Tianyun, Xie Jiaan, Zhang Fangyan, et al. Application of HHT for extracting model parameters of low frequencyoscillations in power systems[J]. Proceedings of the CSEE, 2007, 27(28): 79-83. [13] 韩松, 何利铨, 孙斌, 等. 基于希尔伯特-黄变换的电力系统低频振荡的非线性非平稳分析及其应用[J]. 电网技术, 2008, 32(4): 56-60. Han Song, He Liquan, Sun Bin, et al. Hilbert-Huang transform based nonlinear and non-stationary analysis of power system low frequency oscillation and its application[J]. Power System Technology, 2008, 32(4): 56-60. [14] Selesnick I W. Resonance-based signal decompo- sition: a new sparsity-enabled Signal analysis method[J]. Signal Processing, 2011, 91(12): 2793- 2809. [15] 张文义, 于德介, 陈向民. 基于信号共振稀疏分解与能量算子解调的轴承故障诊断方法[J]. 中国电机工程学报, 2013, 33(20): 111-118. Zhang Wenyi, Yu Dejie, Chen Xiangmin. Fault diagnosis of rolling bearings based on resonance- based sparse signal decomposition and energy oper- ator demodulating[J]. Proceedings of the CSEE, 2013, 33(20): 111-118. [16] 陈向民, 于德介, 罗洁思. 基于信号共振稀疏分解的转子早期碰摩故障诊断方法[J]. 中国机械工程, 2013, 24(1): 35-41. Chen Xiangmin, Yu Dejie, Luo Sijie. Early rub- impact diagnosis of rotors by using resonce-based sparse signal decomposition[J]. China Mechanical Engineering, 2013, 24(1): 35-41. [17] Bayram I, Selesnick I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957-2972. [18] Selesnick I W. Wavelet transform with tunable Q -factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. [19] Afonso M V, Bioucas J M, Figueiredo M A T. Fast image recovery using variable splitting and con- strained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356.