Abstract:In order to analyze the influence of many uncertain factors on the design stage of shipboard electric propulsion systems, gPC was applied in the uncertainty analysis of system simulation. A method to construct multi-dimensional gPC from one-dimension gPC by tensor product was adopted in this paper. By applying the method in the first-order stochastic differential equation, the efficiency of the proposed method was validated. Then, uncertainty analysis of the simulation for the shipboard electric propulsion systems arising from two independent random variables was analyzed. The statistical properties of variables were obtained. The results showed that the proposed method can simulate and analyze the performance of the shipboard electric propulsion system affected by multiple uncertain factors effectively. The dynamic and steady-state performance of the system will be affected by the random variables. The largest impact appears when the system is about to steady-state from dynamic process, which can provide reference for design and development.
刘胜, 程垠钟. 基于多维gPC的船舶电力推进系统仿真不确定性分析[J]. 电工技术学报, 2016, 31(2): 128-135.
Liu Sheng, Cheng Yinzhong. Uncertainty Analysis for Simulation of Shipboard Electric Propulsion System Based on Multi-Dimensional gPC. Transactions of China Electrotechnical Society, 2016, 31(2): 128-135.
[1] Young S, Newell J, Little G. Beyond electric ship[J]. Naval Engineers Journal, 2001, 113(4): 79-92. [2] 王淼, 戴剑锋, 周双喜, 等. 全电力推进船舶电力系统的数字仿真[J]. 电工技术学报, 2006, 21(4): 130-137. Wang Miao, Dai Jianfeng, Zhou Shuangxi, et al. Digital simulation of ship power system with electric propulsion[J]. Transactions of China Electrotechnical Society, 2006, 21(4): 130-137. [3] 刘胜, 张玉廷, 余晨光. 船舶电力推进系统电机组三维模糊控制[J]. 中国电机工程学报, 2012, 32(3): 117-123. Liu Sheng, Zhang Yuting, Yu Chenguang. Three- dimensional fuzzy control for ship electric propulsion turbine[J]. Proceedings of the CSEE, 2012, 32(3): 117-123. [4] Krause P C, Wasynczuk O, Sudhoff S D. Analysis of electric machinery and drive systems, second edition[M]. New York: IEEE Press and Wiley-Interscience, 2002. [5] 董雷, 杨以涵, 张传成, 等. 综合考虑网络结构不确定性的概率潮流计算方法[J]. 电工技术学报, 2012, 27(1): 210-216. Dong Lei, Yang Yihan, Zhang Chuancheng, et al. Probabilistic load flow considering network configura- tion uncertainties[J]. Transactions of China Electrotech- nical Society, 2012, 27(1): 210-216. [6] 段玉兵, 龚宇雷, 谭兴国, 等. 基于蒙特卡罗模拟的微电网随机潮流计算方法[J]. 电工技术学报, 2011, 26(1): 274-278. Duan Yubing, Gong Yulei, Tan Xingguo, et a1. Pro- babilistic power flow calculation in microgrid based on Monte-Carlo simulation[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 274-278. [7] 赵渊, 沈智健, 周念成, 等. 大电网可靠性蒙特卡洛仿真的概率不确定性分析[J]. 中国电机工程学报, 2008, 28(28): 61-67. Zhao Yuan, Shen Zhijian, Zhou Niancheng, et al. Pro- babilistic uncertainty analysis of Monte-Carlo simula- tion for bulk power system reliability evaluation[J]. Proceedings of the CSEE, 2008, 28(28): 61-67. [8] Fishman G S. Monte Carlo: concepts, algorithms, and applications[M]. New York: Springer-Verlag Inc, 1996. [9] Ghanem R G, Spanos P D. Stochastic finite elements: a spectral approach, revised edition[M]. USA: Dover Publications, 2003. [10] Xiu D, Karniadakis G E. The Wiener-Askey polyno- mial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. [11] Xiu D, Karniadakis G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computation Physics, 2003, 187(1): 137-167. [12] Hover F S, Triantafyllou M S. Application of poly- nomial chaos in stability and control[J]. Automatica, 2006, 42(5): 789-795. [13] Lovett T E, Monti A, Ponci F. Automatic synthesis of uncertain models for linear circuit simulation: a poly- nomial chaos theory approach[J]. Simulation Modelling Practice and Theory, 2008, 16(7): 796-816. [14] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学E辑: 技术科学, 2011, 41(6): 790-798. Wang Xiaodong, Kang Shun. Application of poly- nomial chaos on numerical simulation of stochastic cavity flow[J]. Science China Technological Sciences, 2011, 41(6): 790-798. [15] 韩冬, 马进, 贺仁睦, 等. 基于随机响应面法的电力系统仿真不确定性分析[J]. 电力系统自动化, 2011, 35(24): l2-16. Han Dong, Ma Jin, He Renmu, et a1. Uncertainty analysis based on stochastic response surface method in power system simulaton[J]. Automation of Electric Power Systems, 2011, 35(24): l2-16. [16] Bash M, Chan R R, Crider J, et al. A medium voltage DC testbed for ship power system research[C]//Electric Ship Technologies Symposium, 2009: 560-567. [17] Rim C T, Choi N S, Cho G C, et al. A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit DQ transformation[J]. IEEE Transactions on Power Electronics, 1994, 9(4): 390- 396. [18] Xue Y, Xu X, Habetler T G, et al. A low cost stator flux oriented voltage source variable speed drive[C]// Conference Record of the IEEE Industry Applications Society Annual Meeting, 1990: 410-415. [19] Marden M M, Prempraneerach P, Kirtley J L, et al. An end-to-end simulator for the all-electric ship MVDC integrated power system[C]//Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, Society for Modeling & Simulation International, 2010: 136-143. [20] Francois B, Degobert P, Hautier J P. Vector control of induction machines: desensitisation and optimisation through fuzzy logic[M]. Springer, 2012. [21] 孙洪波. 螺旋桨逆转工况下船舶运动建模与仿真[D]. 大连: 大连海事大学, 2007. [22] Prempraneerach P, Kirtley J, Chryssostomidis C, et al. Stochastic modeling of integrated power system coupled to hydrodynamics in the all-electric ship[C]// IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008: 563-568.