Abstract:The vibration suppression of switched reluctance motor (SRM) is a focused research area. This paper presented an improved method of magnetic field partition based on parabola arc formula to calculate the air-gap permeance of the SRM with complex rotor or stator profile. Then, a analytic calculation method on the weakened percentage of radial force wave was proposed, which adopted the ratio mode to calculate the reduction extent of radial force wave by changing the air-gap permeance. This method can provide a reference for vibration suppression design on changing stator or rotor profile. Taken a SRM with slotted rotor as an example, the magnetic field partition methods based on parabola and ellipse arc formula were used respectively to calculate winding inductance and the weakened percentage of radial force wave, which were validated by finite element analysis and prototype motor test. The results verified the improved method of magnetic field partition and the method on computing the weakened percentage of radial force wave.
张鑫, 王秀和, 杨玉波. 基于改进磁场分割法的开关磁阻电机径向力波抑制能力解析计算[J]. 电工技术学报, 2015, 30(22): 9-18.
Zhang Xin, Wang Xiuhe, Yang Yubo. The Computation of Vibration Reduction Capacity for Switched Reluctance Motor Based on Improved Magnetic Field Partition Method. Transactions of China Electrotechnical Society, 2015, 30(22): 9-18.
[1] Lecointe J P, Romary R. Analysis and active redu- ction of vibration and acoustic noise in the switched reluctance motor[J]. Electric Power Applications, 2004, 151(6): 725-733. [2] Zhu Z Q. Analytical model for predicting maximum reduction levels of vibration and noise in switched reluctance machine by active vibration cancellation[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 36-45. [3] Chai J Y, Lin Y W, Liaw C M. Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor[J]. Electric Power Applications, 2006, 153(3): 348-360. [4] Omekanda A M, Broche C, Renglet M. Calculation of the electromagnetic parameters of a switched reluctance motor using an improved FEM-BIEM- application to different models for the torque calcu- lation[J]. IEEE Transactions on Industry Applications, 1997, 33(4): 914-918. [5] 孙玉坤, 吴建兵, 项倩雯. 基于有限元法的磁悬浮开关磁阻电机数学模型[J]. 中国电机工程学报, 2007, 27(12): 33-40. Sun Yukun, Wu Jianbing, Xiang Qianwen. The mathematic model of bearingless switched reluctance motor based on the finite-element analysis[J]. Pro- ceedings of the CSEE, 2007, 27(12): 33-40. [6] Radimov N, Benhail N, Rabinovici R. Simple model of switched-reluctance machine based only on aligned and unaligned position data[J]. IEEE Transactions on Magnetics, 2004, 40(3): 1562-1572. [7] Preston M, Lyons J P. A switched reluctance motor model with mutual coupling and multi-phase excit- ation[J]. IEEE Transactions on Magnetics, 1991, 27(6): 5423-5425. [8] Lee C, Krishnan R, Lobo N S. Novel two-phase switched reluctance machine using commonpole E-core structure: concept, analysis, and experimental verification[J]. IEEE Transactions on Industry App- lications, 2009, 40(2): 703-711. [9] Chun Y D, Wakao S, Kim T H. Multi-objective design optimization of brushless permanent magnet motor using 3D equivalent magnetic circuit network method[J]. IEEE Transactions on Applied Supercon- ductivity, 2004, 14(2): 1910-1913. [10] Kim Y H, Jin C S, Kim S, et al. Analysis of hybrid stepping motor using 3D equivalent magnetic circuit network method based on trapezoidal element[J]. IEEE Transactions on Journal of Applied Physics, 2002, 91(10): 8311-8313. [11] Moallem M, Dawson G E. An improved magnetic equivalent circuit method for predicting the characte- ristics of highly saturated electromagnetic devices[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3632- 3635. [12] 詹琼华. 开关磁阻电动机[M]. 武汉: 华中理工大学出版社, 1992. [13] 吴建华. 开关磁阻电机的设计与应用[M]. 北京: 机械工业出版社, 2000. [14] 张鑫, 王秀和, 杨玉波, 等. 基于转子齿两侧开槽的开关磁阻电机振动抑制方法研究[J]. 中国电机工程学报, 2015, 35(6): 1508-1515. Zhang Xin, Wang Xiuhe, Yang Yubo, et al. Vibration reduction of a switched reluctance motor using new rotor tooth with sot on each side[J]. Proceedings of the CSEE, 2015, 35(6): 1508-1515. [15] 邓智泉, 杨钢, 张媛, 等. 一种新型的无轴承开关磁阻电机数学模型[J]. 中国电机工程学报, 2005, 25(9): 139-146. Deng Zhiquan, Yang Gang, Zhang Yuan, et al. An innovative mathematical model for a bearingless switched reluctance motor[J]. Proceedings of the CSEE, 2005, 25(9): 139-146. [16] 丁文, 梁得亮. 12/8极双通道开关磁阻电机非线性数学模型与有限元分析[J]. 电机与控制学报, 2009, 3(2): 190-196. Ding Wen, Liang Deliang. Nonlinear mathematic model and finite element analysis for a 12/8 pole dual-channel switched reluctance machine[J]. The Electric Machines and Control, 2009, 3(2): 190-196. [17] 王蕾, 李光友, 张强. 磁通反向电机的变网络等效磁路模型[J]. 电工技术学报, 2008, 23(8): 18-23. Wang Lei, Li Guangyou, Zhang Qiang. Network- varying equivalent magnetic circuit modeling of a flux-reversal machine[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 18-23. [18] Salon S J. Finite element analysis of electrical machines[M]. New York: Springer, 1995. [19] 陈坤华, 孙玉坤, 吴建兵. 基于电感模型的开关磁阻电机无位置传感技术[J]. 电工技术学报, 2006, 21(11): 71-75. Chen Kunhua, Sun Yukun, Wu Jianbing. Inductance model-based sensorless control of the switched reluctance motors[J]. Transactions of China Electrotechnical Society, 2006, 21(11): 71-75. [20] 蔡骏, 邓智泉. 一种具有容错功能的开关磁阻电机无位置传感器控制方法[J]. 中国电机工程学报, 2012, 32(36): 109-116. Cai Jun, Deng Zhiquan. A fault-tolerant sensorless control method for switched reluctance motor drives[J]. Proceedings of the CSEE, 2012, 32(36): 109-116. [21] 程明, 周鹗, 黄秀留. 双凸极变速永磁电机的变结构等效磁路模型[J]. 中国电机工程学报, 2001, 21(5): 23-28. Cheng Ming, Zhou E, Huang Xiuliu. Variable structure equivalent magnetic circuit modeling for doubly salient permanent magnet machine[J]. Pro- ceedings of the CSEE, 2001, 21(5): 23-28. [22] 王世山, 刘泽远, 邓智泉, 等. 无轴承开关磁阻电机动、静态电感耦合的数学拟合[J]. 电工技术学报, 2007, 22(12): 22-28. Wang Shishan, Liu Zeyuan, Deng Zhiquan, et al. Mathematical fitting of coupling dynamic and static inductance for a bearingless switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2007, 22(12): 22-28.