Multi Scale Mechanical Simulation and Electromechanical Experimental Testing of GFRP Hollow Insulators Based on Different Process Parameters
Li Le1, Zhao Tianfang1, Liu Yunpeng1, Zhou Songsong2, Wu Wenhua2
1. Hebei Key Laboratory of Green and Efficient New Electrical Materials and Equipment North China Electric Power University Baoding 071003 China; 2. China Electric Power Research Institute Beijing 100192 China
Abstract:Hollow post composite insulators are key components for supporting insulation in ultra-high voltage power equipment. Glass fiber reinforced polymer (GFRP) tubes serve as the inner insulation core, and their winding process has become a crucial factor affecting the mechanical and electrical performance of insulators. However, the existing GFRP pipe winding process parameters still rely on empirical exploration, and the layer design lacks effective basis, making it difficult to meet the high reliability requirements of hollow post composite insulators. Currently, there is still insufficient research on the bending failure of GFRP wrapped pipes under shear stress, and the equivalent modeling and damage analysis of composite materials at multiple scales need to be further studied. It is worth noting that the winding process conditions may affect the degree of bonding between the fiber/matrix resin interface, which in turn affects the internal insulation performance of hollow post composite insulators. Further exploration is needed on the interface and electrical performance of GFRP pipes under different winding processes. This article uses wet winding forming technology to prepare GFRP winding tube samples with different winding angles, layering methods, and fiber diameters. The microstructure, interface, mechanical and electrical properties of different winding process samples were compared and analyzed, and multi-scale mechanical simulation verification was carried out. The results show, firstly, the winding angle significantly affects the bending resistance of the sample. As the winding angle increases, the bending modulus of the sample decreases, and the bending strength initially increases and then decreases. The bending strength of the sample is highest at a winding angle of ±40°, reaching 236.94 MPa. The breakdown strength is lowest at a winding angle of ±50°(46.23 kV/cm), with a relatively high leakage current of 152.58 μA. Conversely, the electrical performance of the sample is optimal at a winding angle of ±60°. Secondly, after introducing the intermediate winding layer, the bending and electrical properties of the sample decrease significantly. The bending strength is the lowest when the intermediate layer is ±80° (128.63 MPa), while the breakdown strength is the lowest when the intermediate layer is ±60°(34.15 kV/cm). This is due to the introduction of the intermediate winding layer, which increases the probability of air gaps between layers and the difficulty of defoaming, resulting in a varying degree of increase in the number of defects. In practical winding processes, it is advisable to avoid introducing intermediate winding layers. Thirdly, the fiber diameter has a limited impact on the bending modulus and bending strength of the sample, but using larger diameter fibers (2 400 g/km) increases the breakdown strength of the sample by 35.5% compared to conventional fibers (1 200 g/km), while the change in water diffusion leakage current is not significant. Therefore, increasing the fiber diameter is considered to be an effective method improving the breakdown strength of the sample. In addition, using a multi-scale modeling method combining micro/macro modeling with Hashin damage criteria could effectively analyze the bending failure process of GFRP wrapped tube samples and predict their bending strength. The simulation error is less than 25%, and the simulation accuracy meets the actual needs of engineering, which could reduce the time and cost associated with extensive testing. In summary, considering the application requirements of GFRP winding tubes for hollow post composite insulators, it is advisable to appropriately reduce the winding angle, avoid introducing intermediate winding layers, and use larger fiber diameter yarns in the actual winding process, which could comprehensively improve the mechanical and electrical performance of hollow post composite insulators.
李乐, 赵天放, 刘云鹏, 周松松, 武文华. 不同缠绕工艺GFRP空心支柱绝缘子力电性能试验及多尺度力学仿真[J]. 电工技术学报, 2025, 40(23): 7776-7792.
Li Le, Zhao Tianfang, Liu Yunpeng, Zhou Songsong, Wu Wenhua. Multi Scale Mechanical Simulation and Electromechanical Experimental Testing of GFRP Hollow Insulators Based on Different Process Parameters. Transactions of China Electrotechnical Society, 2025, 40(23): 7776-7792.
[1] 张语桐, 吴泽华, 徐家忠, 等. 特高压GIS用单支撑绝缘子绝缘结构优化设计[J]. 电工技术学报, 2023, 38(1): 258-269. Zhang Yutong, Wu Zehua, Xu Jiazhong, et al.Optimization design of insulation structure for post insulator in UHVAC GIS[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 258-269. [2] 杨晓峰, 孙梅, 王奇, 等. 特高压直流线路复合绝缘子空气中冲击击穿试验仿真研究[J]. 高压电器, 2023, 59(12): 201-208. Yang Xiaofeng, Sun Mei, Wang Qi, et al.Simulation study on impulse puncture test of composite insulator of UHV DC line in air[J]. High Voltage Apparatus, 2023, 59(12): 201-208. [3] 司建辉, 黄清, 冯树洋, 等. GFRP复合横担空心支柱绝缘子轴压失稳试验研究[J]. 电网与清洁能源, 2020, 36(10): 1-5. Si Jianhui, Huang Qing, Feng Shuyang, et al.Experimental study on axial compression instability of GFRP composite cross arm hollow post insulators[J]. Power System and Clean Energy, 2020, 36(10): 1-5. [4] 周松松, 杜怡君, 王晰, 等. 我国户外复合绝缘子用环氧树脂基复合材料的应用现状及问题讨论[J]. 中国标准化, 2021(增刊1): 222-228. Zhou Songsong, Du Yijun, Wang Xi, et al.Application status and problems of epoxy resin matrix composites for outdoor composite insulators in China[J]. China Standardization, 2021(S1): 222-228. [5] Renton J, Olcott D, Roeseler B, et al.Future of flight vehicle structures (2000 to 2023)[J]. Journal of Aircraft, 2004, 41(5): 986-998. [6] 刘丽, 李勇, 还大军, 等. 高效湿法缠绕用环氧树脂配方及其复合材料性能[J]. 航空动力学报, 2020, 35(2): 378-387. Liu Li, Li Yong, Huan Dajun, et al.Epoxy resin formulation and its composite properties for high efficiency wet winding[J]. Journal of Aerospace Power, 2020, 35(2): 378-387. [7] 何家鹏, 张津毓, 陈章兴, 等. 拉挤工艺单向玻纤复合材料的疲劳衰减特性[J]. 华南理工大学学报(自然科学版), 2024, 52(1): 62-71. He Jiapeng, Zhang Jinyu, Chen Zhangxing, et al.Mechanical properties degradation under fatigue loading in pultruded unidirectional glass fiber reinforced polymer composites[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(1): 62-71. [8] 胡琴, 陈旭烨, 闻君, 等. 强暴雨天气下复合悬式绝缘子交流闪络特性[J]. 电工技术学报, 2025, 40(9): 2970-2981. Hu Qin, Chen Xuye, Wen Jun, et al.AC flashover characteristics of composite suspension insulators under heavy rainstorm[J]. Transactions of China Electrotechnical Society, 2025, 40(9): 2970-2981. [9] 张强, 赵卫生, 李安睿. 特高压复合支柱绝缘子用内绝缘芯棒概况[J]. 玻璃钢/复合材料, 2018(9): 102-105. Zhang Qiang, Zhao Weisheng, Li Anrui.Status of internal insulating mandrel for insulators of UHV composite struts[J]. Fiber Reinforced Plastics/Composites, 2018(9): 102-105. [10] 梁起睿, 叶金蕊, 刘凯, 等. 特高压输电芳纶纤维复合绝缘拉杆孔隙缺陷数值模拟及工艺优化[J]. 工程力学, 2025, 42(5): 264-272. Liang Qirui, Ye Jinrui, Liu Kai, et al.Numerical simulation and process optimization of pore defects of aramid-fiber composite insulated tie rod for UHV transmission[J]. Engineering Mechanics, 2025, 42(5): 264-272. [11] 肖亚超, 郑志才, 陈艳, 等. 湿法缠绕成型工艺研究进展[J]. 化工新型材料, 2019, 47(增刊1): 24-28. Xiao Yachao, Zheng Zhicai, Chen Yan, et al.Research progress in wet winding technology[J]. New Chemical Materials, 2019, 47(S1): 24-28. [12] 王新峰, 周光明, 周储伟, 等. 基于周期性边界条件的机织复合材料多尺度分析[J]. 南京航空航天大学学报, 2005, 37(6): 730-735. Wang Xinfeng, Zhou Guangming, Zhou Chuwei, et al.Multi-scale analyses of woven composite based on periodical boundary condition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(6): 730-735. [13] 张亮泉, 李惠, 欧进萍. 纤维缠绕CFRP圆管力学性能的试验及数值模拟研究[J]. 土木工程学报, 2009, 42(8): 50-56. Zhang Liangquan, Li Hui, Ou Jinping.Experimental and numerical study of mechanical properties of filament-wound CFRP tubes[J]. China Civil Engineering Journal, 2009, 42(8): 50-56. [14] 张冰, 魏威, 冯贵森, 等. 纤维缠绕角度对GFRP约束混凝土短柱轴压性能的影响[J]. 建筑结构学报, 2019, 40(增刊1): 192-199. Zhang Bing, Wei Wei, Feng Guisen, et al.Influences of fiber angles on axial compressive behavior of GFRP-confined concrete stub column[J]. Journal of Building Structures, 2019, 40(S1): 192-199. [15] 吴杨, 邢静忠, 耿沛, 等. 考虑纤维体积含量变化的纤维缠绕厚壁柱形结构的等强度设计[J]. 复合材料学报, 2015, 32(3): 789-796. Wu Yang, Xing Jingzhong, Geng Pei, et al.Constant strength design of filament wound thick-walled cylindrical structure considering variation of fiber volume content[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 789-796. [16] 徐光磊, 杨庆平, 阮文俊, 等. 考虑混杂效应时纤维混杂缠绕筒三维等效弹性模量的理论估算和试验研究[J]. 复合材料学报, 2012, 29(4): 204-209. Xu Guanglei, Yang Qingping, Ruan Wenjun, et al.Estimation and experiment of 3D effective elastic modulus for fibre hybrid tube considering hybrid effects[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 204-209. [17] 刘美军. 植物纤维缠绕复合材料成型机理及其优化研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. Liu Meijun.Study on forming mechanism and optimiza-tion of plant fiber winding composite[D]. Harbin: Harbin University of Science and Technology, 2020. [18] Li Tao, Zhao Guanghui, Zhang Guolu, et al.Study on progressive damage performance of basalt-fiber wound composite tube[J]. Polymer Composites, 2022, 43(11): 7977-7991. [19] 郭海涛, 孙玉洲, 李付永, 等. 高压隔离开关用复合绝缘子设计分析及其特性研究[J]. 高压电器, 2020, 56(12): 141-147. Guo Haitao, Sun Yuzhou, Li Yongfu, et al.Design analysis and characteristic research of composite insulator for high-voltage disconnector[J]. High Voltage Apparatus, 2020, 56(12): 141-147. [20] 杜伯学, 董佳楠, 梁虎成. 特高压GIL非均匀热气流特性与三支柱绝缘子绝缘裕度分析[J]. 电工技术学报, 2023, 38(6): 1678-1686. Du Boxue, Dong Jianan, Liang Hucheng.Non-uniform gas convection in UHV-GIL and insulation margin analysis for tri-post insulator[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1678-1686. [21] 陈静, 臧春艳, 龚禹璐, 等. 超特高压GIL三支柱绝缘子研究述评[J]. 高压电器, 2024, 60(2): 143-155. Chen Jing, Zang Chunyan, Gong Yulu, et al.Research review on tri-post insulator for EHV/UHV GIL[J]. High Voltage Apparatus, 2024, 60(2): 143-155. [22] 国家能源局. 架空输电线路复合横担杆塔设计规程: DL/T 5579—2020[S]. 北京: 中国电力出版社, 2021. [23] Epackachi S, Dolatshahi K M, Oliveto N D, et al.Mechanical behavior of electrical hollow composite post insulators: experimental and analytical study[J]. Engineering Structures, 2015, 93: 129-141. [24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 架空线路绝缘子标称电压高于1 000 V交流系统用悬垂和耐张复合绝缘子定义、试验方法及接收准则: GB/T 19519—2014[S]. 北京: 中国标准出版社, 2015. [25] International Electrotechnical Commission.Insulators for overhead lines-composite suspension and tension insulators for a.c. systems with a nominal voltage greater than 1 000 V-definitions, test methods and accep-tance criteria: IEC 61109:2008[S]. Geneva: IEC, 2008. [26] International Electrotechnical Commission.Composite hollow insulators. Pressurized and un-pressurized insulators for use in electrical equipment with AC rated voltage greater than 1 000 V AC and DC voltage greater than 1 500 V-definitions, test methods, accep-tance criteria and design recommen-dations: IEC 61462:2023[S]. Geneva: IEC, 2023. [27] International Electrotechnical Commission.Electric strength of insulating materials-test methods part 1: tests at power frequencies: IEC 60243-1:2013[S]. Geneva: IEC, 2013. [28] International Electrotechnical Commission.Polymeric HV insulators for indoor and outdoor use-general definitions, test methods and acceptance criteria: IEC 62217:2012[S]. Geneva: IEC, 2012. [29] Dickson A N, Barry J N, McDonnell K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16: 146-152. [30] Ballard M K, McLendon W R, Whitcomb J D. The influence of microstructure randomness on prediction of fiber properties in composites[J]. Journal of Composite Materials, 2014, 48(29): 3605-3620. [31] Omairey S L, Dunning P D, Sriramula S.Development of an ABAQUS plugin tool for periodic RVE homo-genisation[J]. Engineering with Computers, 2019, 35(2): 567-577. [32] 许家忠, 王荣国, 高立业, 等. 基于CADFIL和NUM的缠绕机控制系统设计[J]. 工程塑料应用, 2014, 42(1): 71-74. Xu Jiazhong, Wang Rongguo, Gao Liye, et al.Control system design of winding machine based on CADFIL and NUM[J]. Engineering Plastics Application, 2014, 42(1): 71-74. [33] 李德宝, 朱锐祥, 祖磊, 等. 基于FEM的编织角对碳纤维圆管拉伸性能影响研究[J]. 复合材料科学与工程, 2022(9): 28-34. Li Debao, Zhu Ruixiang, Zu Lei, et al.Effect of braiding angle on tensile properties of carbon fiber circular tube based on FEM[J]. Composites Science and Engineering, 2022(9): 28-34. [34] Li Shuguang, Wongsto A.Unit cells for micro-mechanical analyses of particle-reinforced composites[J]. Mechanics of Materials, 2004, 36(7): 543-572. [35] 李响, 贾欲明, 洪润民. Hashin准则的应力应变形式在复合材料渐进损伤计算中的对比[J]. 机械工程学报, 2022, 58(22): 284-293. Li Xiang, Jia Yuming, Hong Runmin.Comparison between the stress form and strain form of hashin criteria in progressive failure analysis of composite materials[J]. Journal of Mechanical Engineering, 2022, 58(22): 284-293. [36] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005. [37] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005. [38] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005. [39] 国家质量监督检验检验总局, 中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1—2005[S]. 北京: 中国标准出版社, 2005. [40] Han Zebin, Qu Wenjun, Zhu Peng.Tensile behavior of GFRP bar at quasi-static and high strain rate[J]. Construction and Building Materials, 2023, 364: 129915. [41] American Society of Testing Materials. Standard test method for dye penetration of solid fiberglass reinforced pultruded stock: ASTM D5117-17[S]. West Conshohocken: ASTM, 2017. [42] 刘海龙, 程永锋, 卢智成, 等. ±1 100 kV复合支柱绝缘子抗弯性能试验研究[J]. 电瓷避雷器, 2018(5): 207-214. Liu Hailong, Cheng Yongfeng, Lu Zhicheng, et al.Study on the flexural behavior of ±1 100 kV composite post insulators[J]. Insulators and Surge Arresters, 2018(5): 207-214. [43] Zhou Zhilin, Meng Long, Zeng Feng, et al.Experimental study and discrete analysis of compressive properties of glass fiber-reinforced polymer (GFRP) bars[J]. Polymers, 2023, 15(12): 2651. [44] 韦晓星, 李西育, 何庆文, 等. 空心复合绝缘子端部结构对弯曲强度的影响[J]. 电瓷避雷器, 2021(6): 163-169. Wei Xiaoxing, Li Xiyu, He Qingwen, et al.Influence of the end structure of hollow composite insulator on bending strength[J]. Insulators and Surge Arresters, 2021(6): 163-169. [45] 耿沛, 邢静忠, 陈晓霞. 纤维螺旋缠绕管的缠绕角优化[J]. 纺织学报, 2017, 38(1): 61-66. Geng Pei, Xing Jingzhong, Chen Xiaoxia.Winding angle optimization of filament spiral wound pipe[J]. Journal of Textile Research, 2017, 38(1): 61-66. [46] 江讯. 复合空心绝缘子用缠绕管缠绕角度的选择[J]. 电瓷避雷器, 2000(1): 3-6. Jiang Xun.Determination of winding angle of poly-mer tube for hollow composite insulator[J]. Insulators and Surge Arresters, 2000(1): 3-6. [47] 张恒, 方海, 王肖淳, 等. 小角度缠绕复合材料护岸管桩抗弯性能试验与设计[J]. 复合材料科学与工程, 2024(4): 90-96. Zhang Heng, Fang Hai, Wang Xiaochun, et al.Test and design of bending performance of small-angle winding composite revetment pipe piles[J]. Composites Science and Engineering, 2024(4): 90-96. [48] 陈东方, 崔启玉, 张恒, 等. 纤维缠绕管的挂钉工艺参数研究[J]. 纤维复合材料, 2024, 41(2): 78-84. Chen Dongfang, Cui Qiyu, Zhang Heng, et al.Pins winding parameters for fiber winding circular tube[J]. Fiber Composites, 2024, 41(2): 78-84. [49] 司晓闯, 齐小乔, 王红超, 等. 缠绕角度对复合绝缘子用玻纤缠绕管关键性能的影响[J]. 河南科技, 2021, 40(9): 34-36. Si Xiaochuang, Qi Xiaoqiao, Wang Hongchao, et al.Influence of winding angle on key properties of fiberglass wound tubes for composite insulators[J]. Henan Science and Technology, 2021, 40(9): 34-36. [50] 杨静宁, 马连生. 复合材料力学[M]. 北京: 国防工业出版社, 2014. [51] 蔡浩鹏, 王俊鹏, 赵锡鑫, 等. 复合材料缠绕管弯曲载荷下的力学性能[J]. 玻璃钢/复合材料, 2013 (增刊3): 31-34. Cai Haopeng, Wang Junpeng, Zhao Xixin, et al.Study of bending properties of filament winding pipe[J]. Composites Science and Engineering, 2013(S3): 31-34. [52] 王冬旭. 复合材料气瓶冲击后损伤与剩余爆破压力研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. Wang Dongxu.Study on the damage and residual burst-pressure of COPV after impact[D]. Harbin: Harbin Institute of Technology, 2013. [53] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191. Wu Qijian, Wang Chen, Zhi Xudong.Experimental and simulation studies of failure modes of GFRP-reinforced short steel tubes under axially compressive loads[J]. Engineering Mechanics, 2018, 35(8): 184-191. [54] 国家能源局. 标称电压高于1 000 V架空线路用绝缘子使用导则第3部分:交流系统用棒形悬式复合绝缘子: DL/T 1000.3—2015[S]. 北京: 中国电力出版社, 2015. [55] 刘贺晨, 江钰哲, 刘云鹏, 等. 热氧老化对基于酯交换的可降解环氧树脂服役性能与降解特性的影响[J]. 电工技术学报, 2025, 40(13): 4017-4031. Liu Hechen, Jiang Yuzhe, Liu Yunpeng, et al.The effect of thermo-oxidative aging on the service performance and degradation characteristics of ester-exchange-based degradable epoxy resin[J]. Trans-actions of China Electrotechnical Society, 2025, 40(13): 4017-4031. [56] 国家能源局. 交、直流棒形悬式复合绝缘子用芯棒技术规范: DL/T 1580—2016[S]. 北京: 中国电力出版社, 2016. [57] 刘贺晨, 胡如法, 刘云鹏, 等. 220 kV退役复合绝缘子芯棒整体回收再利用可行性研究[J]. 电工技术学报, 2024, 39(11): 3433-3443. Liu Hechen, Hu Rufa, Liu Yunpeng, et al.Feasibility of the overall recycling of 220 kV retired composite insulator core rods[J]. Transactions of China Electro-technical Society, 2024, 39(11): 3433-3443. [58] International Electrotechnical Commission.Polymeric HV insulators for indoor and outdoor use-general definitions, test methods and acceptance criteria: IEC 62217:2021[S]. Geneva: IEC, 2021. [59] 冷兴武. 纤维缠绕原理[M]. 济南: 山东科学技术出版社, 1990. [60] 李进, 赵仁勇, 陈允, 等. 水分含量影响玻璃纤维增强环氧树脂电树枝生长特性研究[J]. 电工技术学报, 2023, 38(5): 1166-1176, 1189. Li Jin, Zhao Renyong, Chen Yun, et al.Effects of moisture contents on electrical treeing process in glass fiber reinforced epoxy resin[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1166-1176, 1189. [61] 李进, 薛润东, 赵仁勇, 等. 基于声弹效应的芳纶增强环氧复合材料残余应力检测技术研究[J]. 电工技术学报, 2023, 38(9): 2519-2527. Li Jin, Xue Rundong, Zhao Renyong, et al.Residual stress detection technology for aramid reinforced epoxy composites based on acoustic-elastic effect[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2519-2527. [62] 张国治, 闫伟阳, 王堃, 等. 流动绝缘油中纤维杂质颗粒运动特性仿真研究[J]. 电工技术学报, 2023, 38(9): 2500-2509. Zhang Guozhi, Yan Weiyang, Wang Kun, et al.Simulation research on movement characteristics of fiber impurity particles in flowing insulating oil[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2500-2509