Optimization Design of Cross-Winding Transverse Flux Linear Generator for Wave Energy Conversion
Chen Minshuo1, Huang Lei2,3, Qin Wei2,3, Li Yuan2, Yang Jianlong2
1. School of Electric Power Engineering Nanjing Institute of Technology Nanjing 211167 China; 2. School of Electrical Engineering Southeast University Nanjing 210096 China; 3. Advanced Ocean Institute Southeast University Nantong 226010 China
Abstract:Wave energy constitutes a significant component of marine renewable energy, characterized by its vast reserves and widespread distribution. Compared to wind and solar energy, wave energy exhibits higher power density and better predictability, presenting immense development potential and promising utilization prospects, thus emerging as the most prioritized and promising marine renewable energy source. The average wave power density along China's coastlines can reach 2 kW/m to 7 kW/m. Developing efficient and low-cost wave energy conversion technologies aligns with global energy development trends and China's national strategic needs, while also addressing coastal power shortages and facilitating off-grid electricity usage in maritime areas. Among various wave energy conversion devices, the direct-drive wave energy conversion (DDWEC) system stands out by eliminating intermediate transmission mechanisms and utilizing linear generators to capture and convert wave energy. It offers advantages such as high efficiency and low cost. However, due to the relatively low velocity of ocean waves, the wave generator is bulky. Researchers worldwide have been utilizing different types of linear generators in direct-drive wave energy conversion systems. The transverse flux linear generator (TFLG) features a central magnetic flux path plane perpendicular to the secondary motion direction. Electrical and magnetic loads can be decoupled, facilitating the increase of machine output power by augmenting the number of pole pairs. It is particularly suitable for low-speed, high-torque/thrust applications. In comparison to longitudinal flux linear machines, TFLG, with an axially laminated structure, effectively blocks eddy currents, reduces eddy current losses, and enhances power generation efficiency. It offers advantages in terms of volume, mass, and efficiency, making it an excellent choice for wave linear generators. This paper introduces a cylindrical transverse flux linear generator featuring circumferential and axial interlaced winding connections, as well as a hybrid excitation structure. By altering the magnetic circuit orientation and employing axial lamination, the proposed design effectively reduces eddy current losses and enhances power generation efficiency. This paper outlines the generator structure, operating principle, and winding connection method. A general expression is derived for the back electromotive force (EMF) applicable to any individual coil. By adjusting the permanent magnet orientation, coil current direction, and axial distance difference, arbitrary amplitude and phase back EMF can be achieved. Subsequently, the paper investigates the impact of different pole-slot combinations and phase winding configurations on average thrust and thrust ripple. Compared to circumferential three-phase and axial three-phase structures, the proposed design exhibits a lower thrust ripple (2.62%) and a higher average thrust force (227.38 N), with a power density of 7.841 kW/m3 per unit volume. The proposed generator features a hybrid excitation structure, which accommodates varying wave velocities, enabling wide-range magnetic field adjustment, minimizing voltage drop under load, and achieving superior power quality. A prototype based on the optimized design parameters was manufactured, and a direct-drive wave energy conversion simulation experiment platform was established. Experimental results closely aligned with finite element simulation results.
陈珉烁, 黄磊, 秦伟, 李渊, 杨建龙. 波浪发电用交叉绕组横向磁通直线发电机优化设计[J]. 电工技术学报, 2025, 40(20): 6446-6459.
Chen Minshuo, Huang Lei, Qin Wei, Li Yuan, Yang Jianlong. Optimization Design of Cross-Winding Transverse Flux Linear Generator for Wave Energy Conversion. Transactions of China Electrotechnical Society, 2025, 40(20): 6446-6459.
[1] Sabzehgar R, Moallem M.A review of ocean wave energy conversion systems[C]//2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, QC, Canada, 2009: 1-6. [2] 洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7): 1886-1900. Hong Yue, Pan Jianfei, Liu Yun, et al.A review on linear generator based wave energy conversion systems[J]. Proceedings of the CSEE, 2019, 39(7): 1886-1900. [3] 林泽川, 黄宣睿, 肖曦. 面向波浪发电优化控制的开关磁阻发电机四象限推力分配策略[J]. 电工技术学报, 2024, 39(12): 3670-3678. Lin Zechuan, Huang Xuanrui, Xiao Xi.Four-quadrant force sharing control of switched reluctance generator for the application of optimal wave energy con- version[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3670-3678. [4] 黄宣睿, 林泽川, 肖曦. 双浮体直驱波浪发电装置建模分析与基于模型预测控制的能量提取算法研究[J]. 电工技术学报, 2024, 39(2): 445-454. Huang Xuanrui, Lin Zechuan, Xiao Xi.Modelling and analysis of the two-body direct-drive wave energy converter and optimal energy extraction method based on model predictive control[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 445-454. [5] 王杰, 郭有贵, 黄宣睿, 等. 波浪能发电储能系统双向DC/DC变换器自适应PI控制策略[J]. 电气工程学报, 2024, 19(4): 99-107. Wang Jie, Guo Yougui, Huang Xuanrui, et al.Bidirectional DC/DC converter adaptive PI control strategy for wave energy generation and energy storage system[J]. Journal of Electrical Engineering, 2024, 19(4): 99-107. [6] Prakash S S, Mamun K A, Islam F R, et al.Wave energy converter: a review of wave energy conversion technology[C]//2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 2016: 71-77. [7] 孙强, 龚鹏程. 横向磁通电机研究状况综述[J]. 电气工程学报, 2024, 19(3): 190-207. Sun Qiang, Gong Pengcheng.Survey overview of transverse flux motor[J]. Journal of Electrical Engineering, 2024, 19(3): 190-207. [8] 封宁君. 磁齿轮及磁场调制永磁电机在海洋能发电系统的应用研究[D]. 南京: 东南大学, 2018. Feng Ningjun.Application of magnetic gear and field-modulated permanent magnet generator in ocean energy generation[D]. Nanjing: Southeast University, 2018. [9] Chen Minshuo, Huang Lei, Li Yang, et al.Analysis of magnetic gearing effect in field-modulated transverse flux linear generator for direct drive wave energy conversion[J]. IEEE Transactions on Magnetics, 2022, 58(2): 8101905. [10] 黄磊, 魏莱, 杨建龙, 等. 基于模型预测的直驱式波浪发电机机侧最优功率控制技术[J]. 电工技术学报, 2024, 39(14): 4391-4404. Huang Lei, Wei Lai, Yang Jianlong, et al.Optimal power control technology of direct-drive wave power generation system based on model prediction[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4391-4404. [11] 付东山. 新型横向磁通永磁直线电机模型建立和优化设计研究[D]. 济南: 山东大学, 2019. Fu Dongshan.Research on model establishment and optimization design of novel transverse flux per- manent magnet linear motor[D]. Jinan: Shandong University, 2019. [12] 赵玫, 赵君, 左思承, 等. 横向磁通永磁直线电机电磁振动特性分析[J]. 电工技术学报, 2024, 39(1): 168-181. Zhao Mei, Zhao Jun, Zuo Sicheng, et al.Analysis of electromagnetic vibration characteristics of transverse flux permanent magnet linear motor[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 168-181. [13] 付东山, 吴康伊, 郑萍, 等. 磁路互补型横向磁通切换直线电机电磁推力计算与特性分析[J]. 电工技术学报, 2022, 37(22): 5717-5727. Fu Dongshan, Wu Kangyi, Zheng Ping, et al.Analysis of electromagnetic thrust characteristics of magnetic circuit complementary transverse flux switching linear motor[J]. Transactions of China Electro- technical Society, 2022, 37(22): 5717-5727. [14] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. Bao Xiaohua, Liu Jiwei, Sun Yue, et al.Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [15] 苏有成, 陈志辉. 基于电感扰动的三相横向磁通永磁电机参数辨识与估算位置偏差修正[J]. 电工技术学报, 2023, 38(12): 3165-3175. Su Youcheng, Chen Zhihui.Parameter identification and estimated position deviation correction of a three- phase transverse flux permanent magnet machine based on inductance perturbation injection[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(12): 3165-3175. [16] Polinder H, Mueller M A, Scuotto M, et al.Linear generator systems for wave energy conversion[C]// Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, 2009: 1-8. [17] 李佳雨, 蓝益鹏. 横向磁场电励磁磁通切换磁悬浮直线电机温度场有限元分析[J]. 电机与控制应用, 2023, 50(10): 54-61. Li Jiayu, Lan Yipeng.Finite element analysis of temperature field of transverse magnetic field flux switched electric excited magnetic suspension linear motor[J]. Electric Machines & Control Application, 2023, 50(10): 54-61. [18] Chung S U, Kim J M.Double-sided iron-core PMLSM mover teeth arrangement design for reduction of detent force and speed ripple[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3000-3008. [19] 司纪凯, 严作光, 聂瑞, 等. 120°相带环形绕组圆筒型永磁直线发电机定位力降低的优化设计[J]. 电工技术学报, 2021, 36(6): 1138-1148. Si Jikai, Yan Zuoguang, Nie Rui, et al.Optimal design of a tubular permanent magnet linear generator with 120° Phase belt toroidal windings for detent force reduction[J]. Transactions of China Electro- technical Society, 2021, 36(6): 1138-1148. [20] Zhu Shaohong, Cox T, Gerada C.Comparative study of novel tubular flux-reversal transverse flux per- manent magnet linear machine[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017: 4282-4287. [21] Zhao Mei, Zuo Sicheng, Zhang Huaqiang, et al.Design and analysis of a primary permanent magnet transverse flux linear generator for direct drive wave energy converters[C]//2021 13th International Sym- posium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 2021: 1-5. [22] 赵玫, 邹继斌, 王骞, 等. 圆筒型横向磁通永磁直线电机的基础研究[J]. 电工技术学报, 2014, 29(增刊1): 80-89. Zhao Mei, Zou Jibin, Wang Qian, et al.Fundamental research of tubular transverse flux permanent magnet linear machine[J]. Transactions of China Electro- technical Society, 2014, 29(S1): 80-89. [23] Chen Minshuo, Huang Lei, Tan Peiwen, et al.A stator-PM transverse flux permanent magnet linear generator for direct drive wave energy converter[J]. IEEE Access, 2021, 9: 9949-9957.