[1] 国网能源研究院. 中国能源电力发展展望[R]. 2020.
[2] Global Wind Energy Council (GWEC).Global wind report: annual market update 2024[R]. Brussels, Belgium, 2023.
[3] 国家能源局. 国家能源局发布2023年全国电力工业统计数据[J]. 电力科技与环保, 2024, 40(1): 95.
[4] 蒋仁言. 工程系统服役质量指数和性能评价指标体系: 文献综述[J]. 机械工程学报, 2019, 55(18): 206-214.
Jiang Renyan.In-service quality indices and per- formance evaluation indicator system of engineered systems: literature review[J]. Journal of Mechanical Engineering, 2019, 55(18): 206-214.
[5] Mohammed O D, Rantatalo M, Aidanpää J O.Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis[J]. Mechanical Systems and Signal Processing, 2015, 54: 293-305.
[6] Mohammed O D.Dynamic modelling and vibration analysis for gear tooth crack detection[D]. Luleå: Luleå Tekniska Universitet, 2015.
[7] General Department of the National Energy Admini- stration. Notice on the development and construction of wind power and photovoltaic power generation in 2021 (draft for comments)[R]. 2021.
[8] Kong Yun, Wang Tianyang, Li Zheng, et al.Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum[J]. Frontiers of Mechanical Engin- eering, 2017, 12(3): 406-419.
[9] Hu Aijun, Xiang Ling, Gao Nan.Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy[J]. Journal of Vibroengineering, 2017, 19(3): 1759-1770.
[10] 雍彬, 陈进, 张方红, 等. 基于门控循环网络融合多源数据的风电齿轮箱状态预警方法[J]. 太阳能学报, 2021, 42(8): 421-425.
Yong Bin, Chen Jin, Zhang Fanghong, et al.State warning of wind turbine gearbox based on gated recurrent unit network fusing multi-source data[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 421-425.
[11] 刘杰, 曹静, 赵昕. 基于OOB-GWO-SVR的风电机组齿轮箱故障预警[J]. 电子测量与仪器学报, 2022, 36(12): 97-105.
Liu Jie, Cao Jing, Zhao Xin.Wind turbine gearbox fault warning based on OOB-GWO-SVR[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(12): 97-105.
[12] 张书瑶, 王梓齐, 刘长良. 基于改进集成KNN回归算法的风电机组齿轮箱状态监测[J]. 动力工程学报, 2023, 43(6): 759-767.
Zhang Shuyao, Wang Ziqi, Liu Changliang.Condition monitoring of wind turbine gearbox based on improved ensemble KNN regression algorithm[J]. Journal of Chinese Society of Power Engineering, 2023, 43(6): 759-767.
[13] 刘旭斌, 郭鹏, 林峰. 基于深度学习与SPRT的风电机组齿轮箱轴承状态监测[J]. 动力工程学报, 2020, 40(11): 889-896
Liu Xubin, Guo Peng, Lin Feng.Condition monitoring of wind turbine gearbox bearings based on deep learning and SPRT[J]. Journal of Chinese Society of Power Engineering, 2020, 40(11): 889-896.
[14] 刘华新, 刘红艳, 韩中合, 等. 基于卷积神经网络的风电机组齿轮箱状态监测方法[J]. 可再生能源, 2020, 38(1): 53-57.
Liu Huaxin, Liu Hongyan, Han Zhonghe, et al.A method of gearbox condition monitoring for wind turbine based on convolutional neural network[J]. Renewable Energy Resources, 2020, 38(1): 53-57.
[15] 赵琴, 袁逸萍, 孙文磊, 等. 基于竞争失效的风电机组齿轮箱轴承剩余寿命分析[J]. 太阳能学报, 2021, 42(4): 438-444.
Zhao Qin, Yuan Yiping, Sun Wenlei, et al.Remaining useful life analysis of gearbox bearing of wind turbine based on competition failure[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 438-444.
[16] 寇海霞, 安宗文, 刘波, 等. 基于贝叶斯网络的风电齿轮箱可靠性分析[J]. 兰州理工大学学报, 2016, 42(1): 40-45.
Kou Haixia, An Zongwen, Liu Bo, et al.Reliability analysis of wind turbine gearbox based on Bayesian network[J]. Journal of Lanzhou University of Tech- nology, 2016, 42(1): 40-45.
[17] 秦子川, 苏宏升. 基于改进威布尔分布的风电机组关键部件可靠性评估[J]. 电测与仪表, 2021, 58(3): 68-73.
Qin Zichuan, Su Hongsheng.Reliability evaluation of key components of wind turbine based on improved Weibull distribution[J]. Electrical Measurement & Instrumentation, 2021, 58(3): 68-73.
[18] 宋天昊, 韩肖清, 梁琛, 等. 计及风电机组齿轮箱疲劳的风电场可靠性评估[J]. 太阳能学报, 2020, 41(7): 304-312.
Song Tianhao, Han Xiaoqing, Liang Chen, et al.Reliability assessment of wind farm considering fatigue of wind turbine gearbox[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 304-312.
[19] Cho S, Gao Z, Moan T.Model-based fault detection of blade pitch system in floating wind turbines[J]. Journal of Physics: Conference Series, 2016, 753: 092012.
[20] 李洪川, 王旭东, 王东明, 等. 基于故障树的风电机组变桨系统故障诊断研究[J]. 设备管理与维修, 2022(15): 168-169.
Li Hongchuan, Wang Xudong, Wang Dongming, et al.Research on fault diagnosis of variable pitch system of wind turbine based on fault tree[J]. Plant Maintenance Engineering, 2022(15): 168-169.
[21] Yang Xianglong, Yang Ming, Zeng Xiangjun, et al.Fault warning of pitch system of wind turbine based on kernel density estimation[C]//8th Renewable Power Generation Conference (RPG 2019), Shanghai, China, 2019: 1-5.
[22] 熊中杰, 邱颖宁, 冯延晖, 等. 基于机器学习的风电机组变桨系统故障研究[J]. 太阳能学报, 2020, 41(5): 85-90.
Xiong Zhongjie, Qiu Yingning, Feng Yanhui, et al.Fault analysis of wind turbine pitch system based on machine learning[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 85-90.
[23] 张真真, 吴立东, 陈晓敏, 等. 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源, 2021, 6(3): 70-75.
Zhang Zhenzhen, Wu Lidong, Chen Xiaomin, et al.Fault diagnosis of wind turbine pitch system based on support vector machine[J]. Distributed Energy, 2021, 6(3): 70-75.
[24] Wei Lu, Qian Zheng, Zareipour H.Wind turbine pitch system condition monitoring and fault detection based on optimized relevance vector machine regression[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2326-2336.
[25] 王伟, 吕丽霞, 张厚. 基于机器学习的风电机组变桨系统故障预警[J]. 电力科学与工程, 2019, 35(10): 73-78.
Wang Wei, Lu Lixia, Zhang Hou.Fault early warning of wind turbine pitch system based on machine learning[J]. Electric Power Science and Engineering, 2019, 35(10): 73-78.
[26] 伍云浩, 滕伟, 王罗, 等. 数字孪生驱动的风电机组变桨系统故障诊断[J]. 风机技术, 2023, 65(2): 63-69.
Wu Yunhao, Teng Wei, Wang Luo, et al.Fault diagnosis of pitch system of digital twins driven wind turbines[J]. Chinese Journal of Turbomachinery, 2023, 65(2): 63-69.
[27] Li Xiongwei, Lv Guanghua, Zhu Runze, et al.Research on fault early warning of wind turbine pitch system based on long short-term memory neural network[C]//2021 China Automation Congress (CAC), Beijing, China, 2021: 7691-7696.
[28] 顾军民, 陈思函, 马永光. 基于RBF神经网络的风电机组变桨系统故障预警[J]. 电力科学与工程, 2020, 36(12): 37-43.
Gu Junmin, Chen Sihan, Ma Yongguang.Research on fault early warning of wind turbine pitch system based on RBF neural network[J]. Electric Power Science and Engineering, 2020, 36(12): 37-43.
[29] 陈思函, 马永光, 马良玉. 基于大数据分析的风电机组变桨系统建模及故障预警研究[J]. 电力科学与工程, 2020, 36(9): 24-29.
Chen Sihan, Ma Yongguang, Ma Liangyu.Research on wind turbine pitch system modeling and fault warning based on big data analysis[J]. Electric Power Science and Engineering, 2020, 36(9): 24-29.
[30] 毛永梅, 彭涛, 韩华, 等. 基于状态观测器的双馈风电机组变流器开关管开路故障检测[J]. 计算机辅助工程, 2015, 24(3): 57-61.
Mao Yongmei, Peng Tao, Han Hua, et al.Open- circuited fault detection on switch of convertor in double-fed wind power generator set based on state observer[J]. Computer Aided Engineering, 2015, 24(3): 57-61.
[31] Yong Chen, Zhang Jianjian, Chen Zhangyong.Current observer-based online open-switch fault diagnosis for voltage-source inverter[J]. ISA Transa- ctions, 2020, 99: 445-453.
[32] 赵洪山, 程亮亮. 基于双线性观测器的双馈风电机组变流器功率管开路故障诊断[J]. 电力自动化设备, 2017, 37(3): 72-79.
Zhao Hongshan, Cheng Liangliang.Open-circuit fault diagnosis based on bilinear observer for converter power-switch of doubly-fed wind turbine[J]. Electric Power Automation Equipment, 2017, 37(3): 72-79.
[33] Zhang Yi long, Zhang Xue guang. The output filter identification of three-phase PWM converter using weighted least square method[J]. Applied Mechanics and Materials, 2015, 734: 877-886.
[34] 张瑞成, 白晓泽, 董砚, 等. 基于LMD能量熵和定位分析的风电变流器开路故障诊断[J]. 太阳能学报, 2023, 44(6): 484-494.
Zhang Ruicheng, Bai Xiaoze, Dong Yan, et al.Open-circuit fault diagnosis of wind power converter based on LMD energy entroy and location analysis[J]. Acta Energiae Solaris Sinica, 2023, 44(6): 484-494.
[35] 段其昌, 荣先亮, 张莉, 等. 双馈风力发电系统双PWM变流器的开路故障诊断[J]. 电气传动, 2010, 40(4): 32-35.
Duan Qichang, Rong Xianliang, Zhang Li, et al.Open circuit faults diagnosis of double-PWM converter for doubly-fed wind power generation system[J]. Electric Drive, 2010, 40(4): 32-35.
[36] 许水清, 陶松兵, 何怡刚, 等. 基于相电流瞬时频率估计的永磁直驱风电变流器开路故障诊断[J]. 电工技术学报, 2022, 37(2): 433-444.
Xu Shuiqing, Tao Songbing, He Yigang, et al.Open- circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on estimated instantaneous frequency of phase current[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(2): 433-444.
[37] Ben Mahdhi H, Ben Azza H, Jemli M.Experimental investigation of an open-switch fault diagnosis approach in the IGBT-based power converter connected toper- manent magnet synchronous generator-DC system[J]. International Transactions on Electrical Energy Systems, 2020, 30(8): e12436.
[38] Li Zhan, Wheeler P, Watson A, et al.A fast diagnosis method for both IGBT faults and current sensor faults in grid-tied three-phase inverters with two current sensors[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5267-5278.
[39] Tan Yanghong, Zhang Haixia, Zhou Ye.Fault detection method for permanent magnet synchronous generator wind energy converters using correlation features among three-phase currents[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(1): 168-178.
[40] Huang Zhanjun, Wang Zhanshan, Yao Xianshuang, et al.Multi-switches fault diagnosis based on small low-frequency data for voltage-source inverters of PMSM drives[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6845-6857.
[41] Liang Jinping, Zhang Ke, Al-Durra A, et al.A novel fault diagnostic method in power converters for wind power generation system[J]. Applied Energy, 2020, 266: 114851.
[42] 顾建锋, 杨维满, 赵春娟, 等. 基于VMD小波包能量熵的风电机组变流器故障诊断方法[J]. 机械研究与应用, 2023, 36(3): 163-167.
Gu Jianfeng, Yang Weiman, Zhao Chunjuan, et al.Fault diagnosis method for wind turbine converter based on VMD wavelet packet energy entropy[J]. Mechanical Research and Application, 2023, 36(3): 163-167.
[43] 吴一斐, 黄伟, 李晓锋, 等. 基于CNN-GRU的风力发电变流器故障诊断技术[J]. 科技与创新, 2022(2): 168-170.
Wu Yifei, Huang Wei, Li Xiaofeng, et al.Fault diagnosis technology of wind power converter based on CNN-GRU[J]. Science and Technology & Innovation, 2022(2): 168-170.
[44] Zhang Jingxuan, Sun Hexu, Sun Zexian, et al.Fault diagnosis of wind turbine power converter con- sidering wavelet transform, feature analysis, judgment and BP neural network[J]. IEEE Access, 2019, 7: 179799-179809.
[45] Burgos R, Chen Gang, Wang F, et al.Reliability- oriented design of three-phase power converters for aircraft applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1249-1263.
[46] 李辉, 季海婷, 秦星, 等. 考虑运行功率变化影响的风电变流器可靠性评估[J]. 电力自动化设备, 2015, 35(5): 1-8.
Li Hui, Ji Haiting, Qin Xing, et al.Reliability evaluation considering operational active power variation of wind power converter[J]. Electric Power Automation Equipment, 2015, 35(5): 1-8.
[47] 杜雄, 李高显, 孙鹏菊, 等. 考虑基频结温波动的风电变流器可靠性评估[J]. 电工技术学报, 2015, 30(10): 258-265.
Du Xiong, Li Gaoxian, Sun Pengju, et al.Reliability evaluation of wind power converters considering the fundamental frequency junction temperature fluctu- ations[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 258-265.
[48] 季海婷, 李辉, 吴建梅, 等. 考虑不同时间尺度的风电变流器功率模块可靠性评估模型[J]. 电测与仪表, 2016, 53(21): 28-34, 64.
Ji Haiting, Li Hui, Wu Jianmei, et al.Multi-time scales reliability evaluation model of power modules in wind power converter[J]. Electrical Measurement & Instrumentation, 2016, 53(21): 28-34, 64.
[49] 曹力, 潘巧波, 王明宇, 等. 基于混合核函数支持向量机的风电机组发电机温度预警方法[J]. 华电技术, 2020, 42(5): 43-49.
Cao Li, Pan Qiaobo, Wang Mingyu, et al.Early warning method for wind turbine generator tempe- rature based on HK-SVM[J]. Huadian Technology, 2020, 42(5): 43-49.
[50] Zhang Yuxian, Yan Shuqing, Qian Xiaoyi, et al.A fault diagnosis based on LSSVM and Bayesian probability for wind turbines[C]//2020 39th Chinese Control Conference (CCC), Shenyang, China, 2020: 4101-4106.
[51] 宋谷月, 王滨, 刘博睿. 基于BP神经网络的风电机组发电机状态监测研究[J]. 吉林电力, 2012, 40(5): 29-32.
Song Guyue, Wang Bin, Liu Borui.Wind turbine generator condition monitoring based on BP[J]. Jilin Electric Power, 2012, 40(5): 29-32.
[52] 于航, 尹诗. 基于GRU-LightGBM的风电机组发电机前轴承状态监测[J]. 中国测试, 2022, 48(9): 105-111.
Yu Hang, Yin Shi.Wind turbine generator front bearing condition monitoring based on GRU- LightGBM algorithm[J]. China Measurement & Test, 2022, 48(9): 105-111.
[53] 赵洪山, 刘辉海, 刘宏杨, 等. 基于堆叠自编码网络的风电机组发电机状态监测与故障诊断[J]. 电力系统自动化, 2018, 42(11): 102-108.
Zhao Hongshan, Liu Huihai, Liu Hongyang, et al.Condition monitoring and fault diagnosis of wind turbine generator based on Stacked autoencoder network[J]. Automation of Electric Power Systems, 2018, 42(11): 102-108.
[54] 王鹏. 基于超声导波方法的风机叶片覆冰检测[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Wang Peng.Detection of icing on fan blades based on ultrasonic guided wave method[D]. Harbin: Harbin Institute of Technology, 2016.
[55] 王宇晨, 成斌. 基于灰色FTA的风机叶片覆冰对机组运行可靠性影响研究[J]. 可再生能源, 2018, 36(4): 598-602.
Wang Yuchen, Cheng Bin.Research on the influence of fan blade icing on the operation reliability of unit based on grey FTA[J]. Renewable Energy Resources, 2018, 36(4): 598-602.
[56] 刘杰, 杨娜, 谭玉涛, 等. 基于WD-LSTM的风电机组叶片结冰状态评测[J]. 太阳能学报, 2022, 43(8): 399-408.
Liu Jie, Yang Na, Tan Yutao, et al.Assessment of icing state of wind turbine blades based on WD- LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 399-408.
[57] 董健, 柳亦兵, 滕伟, 等. 基于BP_Adaboost算法的风电机组叶片结冰检测[J]. 可再生能源, 2021, 39(5): 632-636.
Dong Jian, Liu Yibing, Teng Wei, et al.Wind turbine blade ice detection based on BP_Adaboost algo- rithm[J]. Renewable Energy Resources, 2021, 39(5): 632-636.
[58] 董兴辉, 张劲草, 李佳, 等. 基于数据特性分析的风电机组叶片结冰辨识[J]. 可再生能源, 2023, 41(1): 53-59.
Dong Xinghui, Zhang Jincao, Li Jia, et al.Identification of wind turbine blade icing based on data characteristic analysis[J]. Renewable Energy Resources, 2023, 41(1): 53-59.
[59] 戴乾军. 基于组合赋权-云模型的风电机组健康状态评估[J]. 兰州工业学院学报, 2022, 29(1): 68-73.
Dai Qianjun.Health status assessment of wind turbine based on combined weighting-cloud model[J]. Journal of Lanzhou Institute of Technology, 2022, 29(1): 68-73.
[60] 李进友, 李媛, 冯冰, 等. 基于随机组合赋权模糊评价的风电机组健康状态评估[J]. 太阳能学报, 2022, 43(8): 340-351.
Li Jinyou, Li Yuan, Feng Bing, et al.Wind turbine health state assessment based on stochastic com- bination weighting fuzzy evaluation[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 340-351.
[61] 郭煜涛, 谢丽蓉, 包洪印, 等. 基于多参数融合和组合赋权的风电机组健康状态评估[J]. 新疆大学学报(自然科学版)(中英文), 2022, 39(1): 119-128.
Guo Yutao, Xie Lirong, Bao Hongyin, et al.Evaluation of health status of wind turbine based on multi-parameter fusion and combination weighting[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2022, 39(1): 119-128.
[62] 胡姚刚, 李辉, 刘海涛, 等. 基于多类证据体方法的风电机组健康状态评估[J]. 太阳能学报, 2018, 39(2): 331-341.
Hu Yaogang, Li Hui, Liu Haitao, et al.Evaluation of health status of wind turbine based on multiple evidence method[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 331-341.
[63] 董玉亮, 李亚琼, 曹海斌, 等. 基于运行工况辨识的风电机组健康状态实时评价方法[J]. 中国电机工程学报, 2013, 33(11): 88-95, 15.
Dong Yuliang, Li Yaqiong, Cao Haibin, et al.Real-time health condition evaluation on wind turbines based on operational condition recognition[J]. Proceedings of the CSEE, 2013, 33(11): 88-95, 15.
[64] 李进友, 李媛, 王海鑫, 等. 基于XGBoost-Bin自动功率极限计算的风电机组健康性能评估及预测[J]. 计算机集成制造系统, 2024, 30(6): 2172-2185.
Li Jinyou, Li Yuan, Wang Haixin, et al.Health performance assessment and prediction of wind turbines based on XGBoost-Bin automatic power limit calculation[J]. Computer Integrated Manufacturing Systems, 2024, 30(6): 2172-2185.
[65] 邢幼圣, 庄圣贤, 侯正南, 等. 基于PCA-NAR神经网络的风电机组健康趋势评估[J]. 电气自动化, 2020, 42(1): 64-66, 91.
Xing Yousheng, Zhuang Shengxian, Hou Zhengnan, et al.Evaluation of wind turbine health trend based on the PCA-NAR neural network[J]. Electrical Auto- mation, 2020, 42(1): 64-66, 91.
[66] 林涛, 赵成林, 刘航鹏, 等. 基于改进栈式自编码器的风电机组发电机健康评估[J]. 计算机工程与科学, 2020, 42(3): 517-522.
Lin Tao, Zhao Chenglin, Liu Hangpeng, et al.Health assessment of wind turbine generator based on improved stacked auto-encoder[J]. Computer Engin- eering & Science, 2020, 42(3): 517-522.
[67] 顾剑东, 魏超, 王志强, 等. 耐磨耐候聚氨酯风电叶片涂料的研制[J]. 现代涂料与涂装, 2022, 25(10): 1-3.
Gu Jiandong, Wei Chao, Wang Zhiqiang, et al.Development of polyurethane coatings for turbine blade with wear-resistant and weather-resistant[J]. Modern Paint & Finishing, 2022, 25(10): 1-3.
[68] 江海涛, 李岩, 孙二平, 等. 海上风机钢管桩的阴极保护和防腐涂层性能研究[J]. 船舶工程, 2020, 42(增刊1): 508-511.
Jiang Haitao, Li Yan, Sun Erping, et al.Study on cathodic protection and anticorrosive coating performance of offshore wind turbine steel pipe piles[J]. Ship Engineering, 2020, 42(S1): 508-511.
[69] 黄祥声. 福建海上风电机组环境条件及腐蚀失效分析[J]. 环境技术, 2023, 41(2): 19-23, 34.
Huang Xiangsheng.Environmental conditions and corrosion failure analysis of Fujian offshore wind turbines[J]. Environmental Technology, 2023, 41(2): 19-23, 34.
[70] 胡家元, 钱洲亥, 张娣, 等. 海底电缆铜铠装层在舟山海水模拟溶液中的腐蚀行为[J]. 腐蚀与防护, 2020, 41(5): 16-21.
Hu Jiayuan, Qian Zhouhai, Zhang Di, et al.Corrosion behavior of submarine cable copper clad layer in seawater simulation solution in Zhoushan[J]. Corrosion & Protection, 2020, 41(5): 16-21.
[71] 许志军, 周自强, 李特, 等. 感应电流作用下海底电缆铜铠装层腐蚀规律研究[J]. 表面技术, 2020, 49(7): 280-286.
Xu Zhijun, Zhou Ziqiang, Li Te, et al.Influence of induction current on corrosion of copper armor layer in submarine cable[J]. Surface Technology, 2020, 49(7): 280-286.
[72] 付斌, 曾明伍, 林淑, 等. 海上风电机组碳纤维叶片防雷系统设计及仿真分析[J]. 分布式能源, 2020, 5(2): 35-38.
Fu Bin, Zeng Mingwu, Lin Shu, et al.Lightning protection system design and simulation analysis of carbon fiber blades of offshore wind turbines[J]. Distributed Energy, 2020, 5(2): 35-38.
[73] 周家东, 韩敏, 黄虎. 风电机组叶片雷电损伤机理及防护方法研究[J]. 风能, 2018(2): 74-78.
Zhou Jiadong, Han Min, Huang Hu.Study on lightning damage mechanism and protection method of wind turbine blades[J]. Wind Energy, 2018(2): 74-78.
[74] Zhu Rongwu, Chen Zhe, Wu Xiaojie, et al.Virtual damping flux-based LVRT control for DFIG-based wind turbine[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 714-725.
[75] Wang Xiaohe, Yang Renxin, Shi Zhaohui, et al.Coordinated low voltage ride-through of MMC- HVDC transmission system and wind farm with distributed braking resistors[J]. IEEE Access, 2022, 10: 87860-87869.
[76] Li Botong, Zheng Dingchuan, Li Bin, et al.Analysis of low voltage ride-through capability and optimal control strategy of doubly-fed wind farms under symmetrical fault[J]. Protection and Control of Modern Power Systems, 2023, 8(2): 1-15.
[77] Xiao Xianyong, Yang Ruohuan, Zheng Zixuan, et al.Cooperative rotor-side SMES and transient control for improving the LVRT capability of grid-connected DFIG-based wind farm[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 0600204.
[78] Rafiee Z, Heydari R, Rafiee M, et al.Enhancement of the LVRT capability for DFIG-based wind farms based on short-circuit capacity[J]. IEEE Systems Journal, 2022, 16(2): 3237-3248.
[79] Ding Can, Chen Yunwen, Nie Taiping.LVRT control strategy for asymmetric faults of DFIG based on improved MPCC method[J]. IEEE Access, 2021, 9: 165207-165218.
[80] 谢震, 张兴, 杨淑英, 等. 基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J]. 中国电机工程学报, 2012, 32(27): 16-23.
Xie Zhen, Zhang Xing, Yang Shuying, et al.High voltage ride-through control strategy of doubly fed induction wind generators based on virtual impe- dance[J]. Proceedings of the CSEE, 2012, 32(27): 16-23.
[81] 徐海亮, 章玮, 陈建生, 等. 考虑动态无功支持的双馈风电机组高电压穿越控制策略[J]. 中国电机工程学报, 2013, 33(36): 112-119, 16.
Xu Hailiang, Zhang Wei, Chen Jiansheng, et al.A high-voltage ride-through control strategy for DFIG based wind turbines considering dynamic reactive power support[J]. Proceedings of the CSEE, 2013, 33(36): 112-119, 16.
[82] Wei Juan, Cao Yijia, Wu Qiuwei, et al.Coordinated droop control and adaptive model predictive control for enhancing HVRT and post-event recovery of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1549-1560.
[83] Wei Juan, Wu Qiuwei, Li Canbing, et al.Hierarchical event-triggered MPC-based coordinated control for HVRT and voltage restoration of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1819-1829.
[84] Huang Sheng, Wu Qiuwei, Guo Yifei, et al.Distributed voltage control based on ADMM for large-scale wind farm cluster connected to VSC- HVDC[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 584-594.
[85] Huang Sheng, Wu Qiuwei, Zhao Jin, et al.Distributed optimal voltage control for VSC-HVDC connected large-scale wind farm cluster based on analytical target cascading method[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2152-2161.
[86] Wang Pengda, Wu Qiuwei, Huang Sheng, et al.Coordinated voltage control of offshore wind farms combined with AC grid based on OPF-MPC method[C]//2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 2020: 1-5.
[87] Huang Sheng, Wu Qiuwei, Liao Wu, et al.Adaptive droop-based hierarchical optimal voltage control scheme for VSC-HVDC connected offshore wind farm[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8165-8176.
[88] Peng Hanzhi, Huang Sheng, Wu Qiuwei, et al.Decentralized volt/var control based on variable gradient projection for PMSG-based wind farm[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1305-1314.
[89] Peng Hanzhi, Huang Sheng, Wang Pengda, et al.An online feedback-based local method for topology identification and var/volt control in radial wind farms[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4292-4304.
[90] Huang Sheng, Yang Yu, Wei Juan, et al.Hierarchical service quality regulation method in wind farms based on optimal generating strategy[J]. IEEE Transactions on Sustainable Energy, 2024, 15(3): 1450-1461.
[91] Peng Hanzhi, Huang Sheng, Wei Juan, et al.Two- stage decentralized optimal voltage control in wind farms with hybrid ESSs[J]. IEEE Transactions on Power Systems, 2024, 39(5): 6552-6565.
[92] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759.
Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759.
[93] 李世春, 黄悦华, 王凌云, 等. 基于转速控制的双馈风电机组一次调频辅助控制系统建模[J]. 中国电机工程学报, 2017, 37(24): 7077-7086, 7422.
Li Shichun, Huang Yuehua, Wang Lingyun, et al.Modeling primary frequency regulation auxiliary control system of doubly fed induction generator based on rotor speed control[J]. Proceedings of the CSEE, 2017, 37(24): 7077-7086, 7422.
[94] 姜莹, 边晓燕, 李东东, 等. 基于可变减载率超速控制的双馈异步风机参与微电网调频研究[J]. 电机与控制应用, 2017, 44(9): 118-124.
Jiang Ying, Bian Xiaoyan, Li Dongdong, et al.Research on doubly fed induction generator parti- cipation in microgrid frequency modulation based on variable load shedding ratio over-speed control[J]. Electric Machines & Control Application, 2017, 44(9): 118-124.
[95] 万天虎, 李华, 唐浩, 等. 基于全场控制的风电场一次调频控制方式及其工程化应用[J]. 智慧电力, 2019, 47(1): 41-46.
Wan Tianhu, Li Hua, Tang Hao, et al.Primary frequency regulation control method for wind farm and its engineering application based on full-field control[J]. Smart Power, 2019, 47(1): 41-46.
[96] 高海淑, 张峰, 丁磊. 风电机组两分段下垂调频控制策略及参数整定方法[J]. 电力系统自动化, 2023, 47(18): 111-121.
Gao Haishu, Zhang Feng, Ding Lei.Two-segment droop frequency regulation control strategy and parameter setting method for wind turbines[J]. Auto- mation of Electric Power Systems, 2023, 47(18): 111-121.
[97] Xie Zhen, Feng Yantao, Ma Mingyao, et al.An improved virtual inertia control strategy of DFIG- based wind turbines for grid frequency support[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(5): 5465-5477.
[98] Wang Tong, Jin Mingxin, Li Yongda, et al.Adaptive damping control scheme for wind grid-connected power systems with virtual inertia control[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3902-3912.
[99] Hosny M, Marei M I, Mohamad A M.Adaptive hybrid virtual inertia controller for PMSG-based wind turbine based on fuzzy logic control[J]. Scientific Reports, 2025, 15: 3757.
[100] Zhu Xiaorong, Wang Yi, Xu Lie, et al.Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support[C]//IET Conference on Renewable Power Generation (RPG 2011), Edinburgh, 2011: 1-6.
[101] 秦世耀, 代林旺, 王瑞明, 等. 考虑风电机组功率跌落和机械载荷优化的虚拟惯量控制方法[J]. 电网技术, 2021, 45(5): 1665-1672.
Qin Shiya, Dai Linwang, Wang Ruiming, et al.Virtual inertia control method considering power droop and mechanical load optimization of wind turbines[J]. Power System Technology, 2021, 45(5): 1665-1672.
[102] 林旭, 李军, 杨德健, 等. 基于功率轨迹预设的双馈风电机组虚拟惯量控制策略[J]. 智慧电力, 2023, 51(10): 47-53.
Lin Xu, Li Jun, Yang Dejian, et al.Virtual inertia control strategy for doubly-fed induction generator based on preset power trajectory[J]. Smart Power, 2023, 51(10): 47-53.
[103] 胡正阳, 高丙团, 张磊, 等. 风电机组双向支撑能力分析与自适应惯量控制策略[J]. 电工技术学报, 2023, 38(19): 5224-5240.
Hu Zhengyang, Gao Bingtuan, Zhang Lei, et al.Bidirectional support capability analysis and adaptive inertial control strategy of wind turbine[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(19): 5224-5240.
[104] 李可心, 安军, 石岩, 等. 基于可用调频能量的风电机组综合虚拟惯性控制参数整定方法[J/OL]. 电工技术学报, 1-13 [2025-02-11]. http://kns.cnki.net/kcms/detail/11.2188.TM.20240522.1314.004.html.
Li Kexin, An Jun, Shi Yan, et al. Parameter tuning method for integrated virtual inertia control of wind turbines based on available frequency regulation energy[J/OL]. Transactions of China Electrotechnical Society, 1-13 [2025-02-11]. http://kns.cnki.net/kcms/detail/11.2188.TM.20240522.1314.004.html.
[105] 付媛, 万怿, 张祥宇, 等. 储能虚拟惯量主动支撑与调频状态转移控制[J]. 中国电机工程学报, 2024, 44(7): 2628-2641.
Fu Yuan, Wan Yi, Zhang Xiangyu, et al.Energy storage virtual inertia active support and frequency modulation state transfer control[J]. Proceedings of the CSEE, 2024, 44(7): 2628-2641.
[106] 杨黎, 兰怡希, 林玲, 等. 风储系统中储能虚拟惯量评估与频率支撑技术[J]. 浙江电力, 2024, 43(6): 52-60.
Yang Li, Lan Yixi, Lin Ling, et al.A virtual inertia assessment and frequency support technology for wind-storage power generation system[J]. Zhejiang Electric Power, 2024, 43(6): 52-60.
[107] 张冠锋, 杨俊友, 王海鑫, 等. 基于虚拟同步机技术的风储系统协调调频控制策略[J]. 电工技术学报, 2022, 37(增刊1): 83-92.
Zhang Guanfeng, Yang Junyou, Wang Haixin, et al.Coordinated frequency regulation control strategy for wind-storage system based on virtual synchronous generator technology[J]. Transactions of China Elec- trotechnical Society, 2022, 37(S1): 83-92.
[108] 张祥宇, 胡剑峰, 付媛, 等. 风储联合系统的虚拟惯量需求与协同支撑[J]. 电工技术学报, 2024, 39(3): 672-685.
Zhang Xiangyu, Hu Jianfeng, Fu Yuan, et al.Virtual inertia demand and collaborative support of wind power and energy storage system[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 672-685.
[109] 林莉, 林雨露, 谭惠丹, 等. 计及SOC自恢复的混合储能平抑风电功率波动控制[J]. 电工技术学报, 2024, 39(3): 658-671.
Lin Li, Lin Yulu, Tan Huidan, et al.Hybrid energy storage control with SOC self-recovery to smooth out wind power fluctuations[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 658-671.
[110] 李东东, 朱钱唯, 程云志, 等. 基于自适应惯量阻尼综合控制算法的虚拟同步发电机控制策略[J]. 电力自动化设备, 2017, 37(11): 72-77.
Li Dongdong, Zhu Qianwei, Cheng Yunzhi, et al.Control strategy of virtual synchronous generator based on self-adaptive rotor inertia and damping combination control algorithm[J]. Electric Power Automation Equipment, 2017, 37(11): 72-77.
[111] 杨赟, 梅飞, 张宸宇, 等. 虚拟同步发电机转动惯量和阻尼系数协同自适应控制策略[J]. 电力自动化设备, 2019, 39(3): 125-131.
Yang Yun, Mei Fei, Zhang Chenyu, et al.Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous gen- erator[J]. Electric Power Automation Equipment, 2019, 39(3): 125-131.
[112] 符杨, 黄路遥, 刘璐洁, 等. 基于状态自适应评估的海上风电机组预防性维护策略[J]. 电力自动化设备, 2022, 42(1): 1-9.
Fu Yang, Huang Luyao, Liu Lujie, et al.Preventive maintenance strategy for offshore wind turbine based on state adaptive assessment[J]. Electric Power Automation Equipment, 2022, 42(1): 1-9.
[113] 李锁, 黄玲玲, 刘阳, 等. 基于风电机组状态信息的海上风电场维护策略[J]. 现代电力, 2022, 39(1): 26-35.
Li Suo, Huang Lingling, Liu Yang, et al.An offshore wind farm maintenance strategy based on wind turbine condition information[J]. Modern Electric Power, 2022, 39(1): 26-35.
[114] 蒋究. 基于SVG的风电场SCADA系统Web客户端的设计与实现[D]. 南京: 东南大学, 2015.
Jiang Jiu.Design and implementation of Web client for SCADA system of wind farm based on SVG[D]. Nanjing: Southeast University, 2015.
[115] 于强强. 基于WindOS智慧软件提高风电场运维管理效益[C]//中国农机工业协会风能设备分会, 深圳, 2018: 106-108.
[116] 席菁华. 风电运维混战[J]. 能源, 2018(1): 48-52.
Xi Jinghua.Wind power operation and maintenance melee[J]. Energy, 2018(1): 48-52.
[117] 徐树彪. 风电机组故障预警及智能分析系统[Z]. 云南滇能智慧能源有限公司, 2021-08-31.
[118] El-Naggar M, Sayed A, Elshahed M, et al.Optimal maintenance strategy of wind turbine subassemblies to improve the overall availability[J]. Ain Shams Engineering Journal, 2023, 14(10): 102177.
[119] Do P, Vu H C, Barros A, et al.Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams[J]. Relia- bility Engineering & System Safety, 2015, 142: 56-67.
[120] Zhang Chen, Gao Wei, Yang Tao, et al.Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory manage- ment[J]. Renewable Energy, 2019, 133: 703-711.
[121] Fallahi F, Bakir I, Yildirim M, et al.A chance- constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112789.
[122] Xia Jiajun, Zou Guang.Operation and maintenance optimization of offshore wind farms based on digital twin: a review[J]. Ocean Engineering, 2023, 268: 113322.
[123] 胡阳, 张冲, 房方, 等. 基于主动尾流控制的风电机群协同优化调度[J]. 动力工程学报, 2024, 44(4): 566-574.
Hu Yang, Zhang Chong, Fang Fang, et al.Cooperative and optimal scheduling of wind turbine groups based on active wake control[J]. Journal of Chinese Society of Power Engineering, 2024, 44(4): 566-574.
[124] 邵振州. 风电场尾流快速模拟方法及应用研究[D]. 北京: 华北电力大学, 2019.
Shao Zhenzhou.Research on fast simulation method of wind farm wake and its application[D]. Beijing: North China Electric Power University, 2019.
[125] 李丽霞. 考虑尾流和电气损耗的风电场有功功率提升控制策略研究[D]. 沈阳: 沈阳工业大学, 2017.
Li Lixia.Research on active power boost control strategy of wind farm considering wake and electrical loss[D]. Shenyang: Shenyang University of Tech- nology, 2017.
[126] 张子良, 郭乃志, 易侃, 等. 基于稳定偏航的风电场协同控制[J]. 太阳能学报, 2024, 45(6): 530-535.
Zhang Ziliang, Guo Naizhi, Yi Kan, et al.Coor- dinated control of wind farm based on steady yaw[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 530-535.
[127] Gebraad P M O, Teeuwisse F W, van Wingerden J W, et al. Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study[J]. Wind Energy, 2016, 19(1): 95-114.
[128] 王俊, 周川, 蔡彦枫, 等. 考虑疲劳均衡的海上风电场主动尾流控制研究[J]. 可再生能源, 2021, 39(2): 208-214.
Wang Jun, Zhou Chuan, Cai Yanfeng, et al.Active wake control of offshore wind farm considering fatigue equilibrium[J]. Renewable Energy Resources, 2021, 39(2): 208-214.
[129] Vali M, Petrović V, Pao L Y, et al.Model predictive active power control for optimal structural load equalization in waked wind farms[J]. IEEE Transa- ctions on Control Systems Technology, 2022, 30(1): 30-44.
[130] 魏赏赏, 许昌, 阎洁, 等. 考虑迟延的风电场模型预测尾流优化控制[J]. 中国电机工程学报, 2024, 44(5): 1813-1823.
Wei Shangshang, Xu Chang, Yan Jie, et al.Wake control of wind farm based on model predictive control considering propagation delay[J]. Proceedings of the CSEE, 2024, 44(5): 1813-1823.
[131] Chen Weimin, Wang Pengda, Huang Sheng, et al.MPC-based fatigue load suppression of waked wind farm with 2Dof WT control strategy[J]. IEEE Transactions on Sustainable Energy, 2024, 15(4): 2219-2233.
[132] 姚琦, 梁泽民, 胡阳, 等. 不依赖尾流模型的风电场能效提升与机组载荷抑制控制[J/OL]. 中国电机工程学报, 2024, 1-11 [2024-08-17].
Yao Qi, Liang Zemin, Hu Yang, et al. Control for wind farm efficiency improvement and load reduction without wake models[J/OL]. Proceedings of the CSEE, 2024, 1-11 [2024-08-17].
[133] Shu Tong, Song Dongran, Joo Y H.Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph[J]. Applied Energy, 2022, 306: 117986.
[134] 陈振宇. 风电机组尾流动态演化特性与多机协同优化控制研究[D]. 北京: 华北电力大学, 2022.
Chen Zhenyu.Study on dynamic evolution characteri- stics of wind turbine wake and multi-machine collaborative optimal control[D]. Beijing: North China Electric Power University, 2022.
[135] Fleming P A, Gebraad P M O, Lee Sang, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 2014, 70: 211-218.
[136] Maronga B, Gryschka M, Heinze R, et al.The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives[J]. Geoscientific Model Development, 2015, 8(8): 2515-2551.
[137] Ye Zhaoliang, Wang Xiaodong, Chen Ziwen, et al.Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing[J]. Acta Mechanica Sinica, 2020, 36(2): 320-338.
[138] Onel H C, Tuncer I H.A comparative study of wake interactions between wind-aligned and yawed wind turbines using LES and actuator line models[J]. Journal of Physics: Conference Series, 2020, 1618(6): 062009.
[139] Hansen K S, Barthelmie R J, Jensen L E, et al.The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind Energy, 2012, 15(1): 183-196.
[140] Lee Sang, Vorobieff P, Poroseva S.Interaction of wind turbine wakes under various atmospheric conditions[J]. Energies, 2018, 11(6): 1442.
[141] 武英. 风电机组尾流二维解析模型研究[D]. 北京: 华北电力大学, 2019.
Wu Ying.Study on two-dimensional analytical model of wind turbine wake[D]. Beijing: North China Electric Power University, 2019.
[142] Wang Xiaodong, Ye Zhaoliang, Kang Shun, et al.Investigations on the unsteady aerodynamic characteri- stics of a horizontal-axis wind turbine during dynamic yaw processes[J]. Energies, 2019, 12(16): 3124.
[143] 国家能源局. 关于做好新能源消纳工作保障新能源高质量发展的通知[EB/OL].https://www.gov.cn/zhengce/202406/content_6956393.htm.
[144] 祝东, 陈武晖, 郭小龙, 等. 蓄热电采暖与需求响应协同消纳风电的混合时间尺度调度策略[J/OL]. 中国电机工程学报, 1-12 [2025-02-11]. http://kns.cnki.net/kcms/detail/11.2107.tm.20240508.1329.004.html.
Zhu Dong, Chen Wuhui, Guo Xiaolong, et al. Hybrid time-scale dispatch strategy for wind power con- sumption by thermal storage electric heating and demand response[J/OL]. Proceedings of the CSEE, 1-12 [2025-02-11]. http://kns.cnki.net/kcms/detail/11.2107.tm.20240508.1329.004.html.
[145] 侯俊禹, 袁至, 王维庆, 等. 利用建筑虚拟储能提升风电消纳能力的电热联合系统优化调度方法[J]. 太阳能学报, 2024, 45(5): 206-216.
Hou Junyu, Yuan Zhi, Wang Weiqing, et al.Optimal scheduling method of combined electric and thermal system by using building virtual energy storage to improve wind power accommodation capability[J]. Acta Energiae Solaris Sinica, 2024, 45(5): 206-216.
[146] 周明, 武昭原, 贺宜恒, 等. 兼顾中长期交易和风电参与的日前市场出清模型[J]. 中国科学: 信息科学, 2019, 49(8): 1050-1065.
Zhou Ming, Wu Zhaoyuan, He Yiheng, et al.A day-ahead electricity market-clearing model con- sidering medium- and long-term transactions and wind producer participation[J]. Scientia Sinica (Informationis), 2019, 49(8): 1050-1065.
[147] 黄大为, 李赛龙, 孔令国. 计及中长期合同电量分解与风电报价的日前市场出清模型研究[J]. 东北电力大学学报, 2023, 43(4): 45-56.
Huang Dawei, Li Sailong, Kong Lingguo.Research on day-ahead electricity market clearing model considering medium and long-term contracts decomposition and wind power producer bidding[J]. Journal of Northeast Electric Power University, 2023, 43(4): 45-56.
[148] 卢治霖, 刘明波, 尚楠, 等. 考虑碳排放权交易市场影响的日前电力市场两阶段出清模型[J]. 电力系统自动化, 2022, 46(10): 159-170.
Lu Zhilin, Liu Mingbo, Shang Nan, et al.Two-stage clearing model for day-ahead electricity market considering impact of carbon emissions trading market[J]. Automation of Electric Power Systems, 2022, 46(10): 159-170.
[149] 陈春宇, 黄宸恺, 王剑晓, 等. 考虑风电不确定性的调频辅助服务市场多时间尺度出清调度策略[J]. 电工技术学报, 2024, 39(21): 6804-6818.
Chen Chunyu, Huang Chenkai, Wang Jianxiao, et al.Multi-time-scale frequency regulation market clearing and dispatch strategy considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6804-6818.
[150] 刘晓军, 熊健, 王艺博, 等. 考虑不确定变量VMD及绿证-碳联合交易的综合能源系统经济优化调度[J/OL]. 电工技术学报, 1-17 [2025-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240967.
Liu Xiaojun, Xiong Jian, Wang Yibo, et al. Economic dispatch of integrated energy systems considering uncertain variables VMD and joint green certificate- carbon trading[J/OL]. Transactions of China Electro- technical Society, 1-17 [2025-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240967. |