Investigation of Lightning Shielding Distances Between Adjacent Wind Turbines Considering Upward Leader Development
Cai Li1,2, Fan Wenchao1,2, Yu Pengcheng1,2, Zhou Mi1,2, Wang Jianguo1,2
1. Engineering Research Center of Ministry of Education for Lightning Protection and Grounding Technology Wuhan 430072 China; 2. School of Electric Engineering and Automation Wuhan University Wuhan 430072 China
Abstract:Wind power is a rapidly developing renewable energy source; however, the unique size and location of wind turbines pose significant lightning threats to the safe and stable operation of wind farms. Unlike traditional stationary structures, wind turbines are more prone to initiating upward leaders at blade tips due to their rotational characteristics. Consequently, previous lightning protection models that neglected upward leaders may not be suitable for evaluating lightning protection in wind turbines. This study aims to establish a simulation model for wind turbines, utilizing upward and downward leader propagation models to compute the striking distance and analyze the lightning shielding effects and influencing factors in wind farms. A full-scale 3 MW wind turbine model is established with defined downward leader charge distribution, propagation speed, thundercloud charges, and simulation boundaries. The initiation and propagation of upward leaders are calculated and analyzed using a self-consistent leader inception and propagation model. Geometric factor is introduced to linearize the potential distribution in the streamer region to simplify computations. The simulation accounts for the effects of downward leader propagation, upward leader initiation and propagation, and leader connection. Results show that striking distances vary with downward leader offsets and blade rotation angles, as different scenarios affect upward leader propagation. Longer development times improve upward leader propagation, requiring more time for breakdown between upward and downward leaders when offsets occur. Larger blade rotation angles increase potential gradients at blade tips, leading to earlier upward leader initiation and longer development. Lightning shielding effects are analyzed based on striking distances. Shielding is weakest at a 90-degree blade rotation angle and slightly better at 30-degrees blade rotation angle. Environmental parameters, including atmospheric pressure and humidity, enhance shielding, while altitude reduces it. These findings highlight the importance of considering environmental factors in lightning protection designs for wind turbines.
[1] 朱玲, 李威, 王骞, 等. 基于校正条件生成对抗网络的风电场群绿氢储能系统容量配置[J]. 电工技术学报, 2024, 39(3): 714-730. Zhu Ling, Li Wei, Wang Qian, et al.Wind farms-green hydrogen energy storage system capacity sizing method based on corrected-conditional generative adversarial network[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 714-730. [2] 胡琴, 王欢, 舒立春, 等. 覆冰条件下风力发电机叶片防/除冰方法综述[J]. 电工技术学报, 2024, 39(17): 5482-5496. Hu Qin, Wang Huan, Shu Lichun, et al.Review of anti-/de-icing methods for wind turbine blades under icing conditions[J]. Transactions of China Electro-technical Society, 2024, 39(17): 5482-5496. [3] Radičević B M, Savić M S, Madsen S F, et al.Impact of wind turbine blade rotation on the lightning strike incidence-a theoretical and experimental study using a reduced-size model[J]. Energy, 2012, 45(1): 644-654. [4] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815. Cai Guowei, Lei Yuhang, Ge Weichun, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815. [5] 黄怡鋆, 樊亚东, 王红斌, 等. 组合八邻域跟踪算法监测全闪电雷暴活动时空演变过程及特征[J]. 电工技术学报, 2024, 39(5): 1536-1547. Huang Yijun, Fan Yadong, Wang Hongbin, et al.Spatial-temporal evolution process and characteristics of thunderstorm activity based on combinatorial eight-connectivity tracking algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1536-1547. [6] 蔡力, 田汭鑫, 魏俊涛, 等. 连续冲击电流脉冲下避雷器阀片电气性能研究[J]. 电工技术学报, 2023, 38(增刊1): 168-176. Cai Li, Tian Ruixin, Wei Juntao, et al.Research on the electrical performance of ZnO varistors under multiple impulse current pulse[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 168-176. [7] 蔡力, 杜懿阳, 胡强, 等. 火箭引雷至架空线路与地面电流对比分析[J]. 电工技术学报, 2024, 39(3): 914-923. Cai Li, Du Yiyang, Hu Qiang, et al.Comparative analysis of current of rocket-triggered lightning striking the overhead line and the ground[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 914-923. [8] 蔡力, 杜懿阳, 胡强, 等. 火箭引雷至架空线路与地面近距离磁场对比分析[J]. 电工技术学报, 2023, 38(24): 6798-6806. Cai Li, Du Yiyang, Hu Qiang, et al.Comparative analysis of close magnetic field of rocket-triggered lightning striking the overhead line and the ground[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6798-6806. [9] 李庆民, 郭子炘, 张黎, 等. 大型风电场雷击防护研究面临的关键问题[J]. 中国电机工程学报, 2018, 38(18): 5296-5306. Li Qingmin, Guo Zixin, Zhang Li, et al.Key issues with lightning protection research of the large-scale wind farms[J]. Proceedings of the CSEE, 2018, 38(18): 5296-5306. [10] 蔡力, 柯逸丰, 李进, 等. 基于高速摄像观测的风电场雷击风机发展过程和特性分析[J]. 电工技术学报, 2021, 36(增刊1): 303-310. Cai Li, Ke Yifeng, Li Jin, et al.Development process and characteristic analysis of the natural lightning strike on wind turbine based on high-speed camera observation[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 303-310. [11] 任瀚文, 郭子炘, 马宇飞, 等. 雷击风机叶片的跃变击距特性与定量表征[J]. 电工技术学报, 2017, 32(15): 216-224. Ren Hanwen, Guo Zixin, Ma Yufei, et al.Quantitative characterization of the striking saltus distance of wind turbine blade[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 216-224. [12] Zhou Qibin, Liu Canxiang, Bian Xiaoyan, et al.Numerical analysis of lightning attachment to wind turbine blade[J]. Renewable Energy, 2018, 116: 584-593. [13] 张萍, 赵新贺, 聂鑫鹏, 等. 基于ATP-EMTP的风电机组塔筒二次雷电回击暂态分析[J]. 高压电器, 2023, 59(5): 163-169. Zhang Ping, Zhao Xinhe, Nie Xinpeng, et al.Transient analysis of secondary lightning strike in wind turbine tower based on ATP-EMTP[J]. High Voltage Apparatus, 2023, 59(5): 163-169. [14] Guo Zixin, Li Qingmin, Ma Yufei, et al.Experimental study on lightning attachment manner to wind turbine blades with lightning protection system[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 635-646. [15] 赵泽洋, 肖慈恩, 刘亚坤, 等. 接闪阳极参数对雷电弧材料损伤数值分析的影响[J]. 电工技术学报, 2024, 39(5): 1486-1496. Zhao Zeyang, Xiao Cien, Liu Yakun, et al.Influence of anode on numerical analysis of arc-material interactions with multi-field coupling in lightning damage[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1486-1496. [16] He Jinliang, Yang Guohua, Li Quanxin, et al. First altitude-triggered lightning experiment associated with an elevated wind turbine blade on the ground[J]. Geophysical Research Letters, 2024, 51(18): e2024GL109400. [17] 文习山, 邓冶强, 王羽, 等. 风力发电机叶片雷击接闪特性研究综述[J]. 高电压技术, 2020, 46(7): 2511-2521. Wen Xishan, Deng Yeqiang, Wang Yu, et al.Review of research on lightning striking performance of wind turbine blade[J]. High Voltage Engineering, 2020, 46(7): 2511-2521. [18] Rachidi F, Rubinstein M, Montanya J, et al.A review of current issues in lightning protection of new-generation wind-turbine blades[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2489-2496. [19] Dwyer J R, Uman M A.The physics of lightning[J]. Physics Reports, 2014, 534(4): 147-241. [20] Warner T A, Helsdon J H, Bunkers M J, et al.UPLIGHTS: upward lightning triggering study[J]. Bulletin of the American Meteorological Society, 2013, 94(5): 631-635. [21] Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower[J]. Geophysical Research Letters, 2008, 35(2): L0280. [22] Saba M M F, Paiva A R, Schumann C, et al. Lightning attachment process to common buildings[J]. Geophysical Research Letters, 2017, 44(9): 4368-4375. [23] Cai Li, Ke Yifeng, Fan Wenchao, et al.Observation of an upward lightning flash with 21 upward positive leaders initiated from different wind turbines in wind farm[J]. High Voltage, 2024, 9(1): 163-171. [24] Candela Garolera A, Cummins K L, Madsen S F, et al.Multiple lightning discharges in wind turbines associated with nearby cloud-to-ground lightning[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 526-533. [25] Ma Ziwei, Jasni J, Ab Kadir M Z A, et al. Numerical model of lightning attachment on UHV-AC trans-mission lines and effects of operating voltage, phase angle, and terrain[J]. Electric Power Systems Research, 2024, 227: 109986. [26] Tavakoli M R B, Vahidi B. Transmission-lines shielding failure-rate calculation by means of 3-D leader progression models[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 507-516. [27] 雷宇航, 蔡国伟, 潘超. 大气条件下雷击风机叶片初始流注区电场强度与临界长度研究[J]. 电工技术学报, 2019, 34(20): 4392-4399. Lei Yuhang, Cai Guowei, Pan Chao.Research of electric field of lightning initial streamer from wind turbine blade and critical length based on atmospheric conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4392-4399. [28] Bian Xiaoyan, Wu Yong, Zhou Qibin, et al.Quantitative characteristics of the striking distance to wind turbine blades based on an improved stochastic lightning model[J]. IET Generation, Transmission & Distribution, 2023, 17(10): 2317-2330. [29] 黄胜鑫, 陈维江, 贺恒鑫, 等. 风力发电机组下行雷击风险计算方法[J]. 中国电机工程学报, 2019, 39(12): 3541-3551. Huang Shengxin, Chen Weijiang, He Hengxin, et al.Downward lightning risk assessment method asso-ciated with wind turbine[J]. Proceedings of the CSEE, 2019, 39(12): 3541-3551. [30] Nie Jiayi, Xiang Nianwen, Li Kejie, et al.Multiple wind turbines shielding model of lightning attractiveness for mountain wind farms[J]. Electric Power Systems Research, 2023, 224: 109727. [31] Zhang Li, Wang Guozheng, Zhang Wenfang, et al.An electro-geometric model for lightning shielding of multiple wind turbines[J]. Energies, 2017, 10(9): 1272. [32] Yang Ning, Zhang Qilin, Hou Wenhao, et al.Analysis of the lightning-attractive radius for wind turbines considering the developing process of positive atta-chment leader[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(6): 3481-3491. [33] Cooray V, Rakov V, Theethayi N.The lightning striking distance—revisited[J]. Journal of Electrostatics, 2007, 65(5/6): 296-306. [34] Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 897-908. [35] Becerra M, Cooray V.Time dependent evaluation of the lightning upward connecting leader inception[J]. Journal of Physics D: Applied Physics, 2006, 39(21): 4695-4702. [36] Rizk F A M. A model for switching impulse leader inception and breakdown of long air-gaps[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 596-606. [37] Lalande P, Bondiou-Clergerie A, Bacchiega G, et al.Observations and modeling of lightning leaders[J]. Comptes Rendus Physique, 2002, 3(10): 1375-1392. [38] Dellera L, Garbagnati E.Lightning stroke simulation by means of the leader progression model. I. Description of the model and evaluation of exposure of free-standing structures[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2009-2022. [39] Candela Garolera A, Madsen S F, Nissim M, et al.Lightning damage to wind TurbineBlades from wind farms in the U.S[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1043-1049. [40] Becerra M.Corona discharges and their effect on lightning attachment revisited: upward leader initiation and downward leader interception[J]. Atmospheric Research, 2014, 149: 316-323. [41] Eriksson A J, le Roux B C, Geldenhuys H J, et al. Study of airgap breakdown characteristics under ambient conditions of reduced air density[J]. IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, 1986, 133(8): 485. [42] Petrov N I, Waters R T.Determination of the striking distance of lightning to earthed structures[J]. Procee-dings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1995, 450(1940): 589-601. [43] He Hengxin, Liu Lipeng, Ding Yujian, et al. Positive leaders propagate slower at higher altitudes: experimental evidence and theoretical explanation[J]. Geophysical Research Letters, 2022, 49(4): e2021GL095995. [44] Abdel-Salam M. Positive wire-to-plane coronas as influenced by atmospheric humidity[J]. IEEE Transactions on Industry Applications, 1985, IA-21(1): 35-40. [45] Bian Xingming, Wang Liming, MacAlpine J K, et al. Positive corona inception voltages and corona currents for air at various pressures and humidities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 63-70. [46] Li Bingxu, Li Xingwen, Fu Mingli, et al.Effect of humidity on dielectric breakdown properties of air considering ion kinetics[J]. Journal of Physics D Applied Physics, 2018, 51(37): 375201.