Research on Lightning Protection Effect of Wind Turbine Group in Wind Farm Considering Terrain Characteristics
Cai Li1,2, Chen Mengyuan1,2, Jin Haohao1,2, Zhou Mi1,2, Wang Jianguo1,2
1. Engineering Research Center of Ministry of Education for Lightning Protection and Grounding Technology Wuhan 430072 China; 2. School of Electric Engineering and Automation Wuhan University Wuhan 430072 China
Abstract:Wind turbines located in mountainous areas have lightning shielding characteristics that are different from those in plains, which makes it difficult to assess their lightning protection performance. In this study, a three-dimensional (3D) finite element electromagnetic simulation model is constructed which includes the wind turbine, terrain features, thundercloud configurations, and downstream pilot. Using the self-consistent leader inception and propagation model (SLIM), This paper calculated the lightning attraction zone of the wind turbine and investigated the effect of the terrain configuration on its lightning protection. First, the relationship between the lightning attraction area and the rotational angle characteristics of the wind turbine within the wind farm was analyzed. The results show that the lightning attraction area of the wind turbine is maximized when the blades of the wind turbine are in a vertical position, which is when the wind turbine generator blades are at their highest height. This is due to the fact that the strength of the electric field at the surface of the lightning catcher is maximized, which promotes the initiation and development of upward leadership. Then, this paper analyzed the effect of the scaled-down wind turbine lightning strike test on the wind turbine rotation, and propose the wind turbine speed correction parameter, which corrects the SLIM according to the wind turbine speed. The analysis shows that the wind turbine rotation drives the neutralization of space charge diffusion in the corona region, which makes the initial charge in the corona region decrease and inhibits the stable formation of the upward leader. In addition, this paper analyzed the relationship between wind turbine terrain characteristics (especially slope and height), lightning current amplitude and lightning attraction area. The lightning attraction area increases with increasing terrain slope and terrain height. It is worth noting that the trend of lightning attraction area with terrain height is more obvious than the slope of the terrain where the wind turbine is located. Finally, this paper obtained quantitative characteristic relationships between wind turbine topographic features, rotational speed, lightning current magnitude and lightning attraction area. By combining the lightning attraction area characteristics analyzed in this study with the wind turbine shielding model, this paper proposed a method to evaluate the actual lightning attraction capacity of wind turbines, which can calculate the lightning protection effectiveness of wind turbines in wind farms.
蔡力, 陈梦远, 靳浩昊, 周蜜, 王建国. 考虑地形特征的风电场风机群雷电保护效应研究[J]. 电工技术学报, 2024, 39(zk1): 159-170.
Cai Li, Chen Mengyuan, Jin Haohao, Zhou Mi, Wang Jianguo. Research on Lightning Protection Effect of Wind Turbine Group in Wind Farm Considering Terrain Characteristics. Transactions of China Electrotechnical Society, 2024, 39(zk1): 159-170.
[1] 蔡力, 田汭鑫, 魏俊涛, 等. 连续冲击电流脉冲下避雷器阀片电气性能研究[J]. 电工技术学报, 2023, 38(增刊1): 168-176. Cai Li, Tian Ruixin, Wei Juntao, et al.Research on the electrical performance of ZnO varistors under multiple impulse current pulse[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 168-176. [2] 黄怡鋆, 樊亚东, 王红斌, 等. 组合八邻域跟踪算法监测全闪电雷暴活动时空演变过程及特征[J]. 电工技术学报, 2024, 39(5): 1536-1547. Huang Yijun, Fan Yadong, Wang Hongbin, et al.Spatial-temporal evolution process and characteristics of thunderstorm activity based on combinatorial eight-connectivity tracking algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1536-1547. [3] 赵泽洋, 刘亚坤. 考虑风电场需求的广域水平风速与雷电活动特征分析[J]. 电工技术学报, 2024, 39(11): 3467-3474. Zhao Zeyang, Liu Yakun.Characteristics of wide-area horizontal wind speed and lightning activity for wind farms[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3467-3474. [4] 蔡力, 杜懿阳, 胡强, 等. 火箭引雷至架空线路与地面近距离磁场对比分析[J]. 电工技术学报, 2023, 38(24): 6798-6806. Cai Li, Du Yiyang, Hu Qiang, et al.Comparative analysis of close magnetic field of rocket-triggered lightning striking the overhead line and the ground[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6798-6806. [5] 陈维江, 何天宇, 边凯, 等. 风机叶片雷击损伤及防护研究进展综述[J]. 高电压技术, 2019, 45(9): 2782-2796. Chen Weijiang, He Tianyu, Bian Kai, et al.Review of research progress in lightning damage and protection of wind turbine blades[J]. High Voltage Engineering, 2019, 45(9): 2782-2796. [6] 蔡力, 杜懿阳, 胡强, 等. 火箭引雷至架空线路与地面电流对比分析[J]. 电工技术学报, 2024, 39(3): 914-923. Cai Li, Du Yiyang, Hu Qiang, et al.Comparative analysis of current of rocket-triggered lightning striking the overhead line and the ground[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 914-923. [7] Armstrong H R, Whitehead E. Field and analytical studies of transmission line shielding[J]. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(1): 270-281. [8] Brown G W, Whitehead E R. Field and analytical studies of transmission line shielding: part Ⅱ[J]. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(5): 617-626. [9] 施广全, 张义军, 陈绍东, 等. 风力发电机组防雷技术进展综述[J]. 电网技术, 2019, 43(7): 2477-2487. Shi Guangquan, Zhang Yijun, Chen Shaodong, et al.Review of lightning protection technique progress of wind turbines[J]. Power System Technology, 2019, 43(7): 2477-2487. [10] 施广全. 风力发电机组雷电致灾机理及其防护方法研究[D]. 南京: 南京信息工程大学, 2019. Shi Guangquan.Research on lightning disaster mechanism and its protection methods for wind turbine[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. [11] 蔡力, 储汪祥, 韦道明, 等. 人工触发闪电箭式先导和企图先导光电同步观测与模拟[J]. 电工技术学报, 2023, 38(增刊1): 177-186. Cai Li, Chu Wangxiang, Wei Daoming, et al.Photoelectric synchronous observation and simulation of dart leader and attempted leader of artificially triggered lightning[J]. Transactions of China Electro-technical Society, 2023, 38(S1): 177-186. [12] 雷宇航, 蔡国伟, 潘超. 大气条件下雷击风机叶片初始流注区电场强度与临界长度研究[J]. 电工技术学报, 2019, 34(20): 4392-4399. Lei Yuhang, Cai Guowei, Pan Chao.Research of electric field of lightning initial streamer from wind turbine blade and critical length based on atmospheric conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4392-4399. [13] 任瀚文, 郭子炘, 马宇飞, 等. 雷击风机叶片的跃变击距特性与定量表征[J]. 电工技术学报, 2017, 32(15): 216-224. Ren Hanwen, Guo Zixin, Ma Yufei, et al.Quantitative characterization of the striking saltus distance of wind turbine blade[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 216-224. [14] Madsen S F, Erichsen H V.Numerical model to determine lightning attachment point distributions on wind turbines according to the revised IEC 61400-24[C]//Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE), Pittsfield, MA, USA, 2009: 15-17. [15] Madsen S F, Mieritz C F, Garolera A C. Numerical tools for lightning protection of wind turbines[C]//Proceedings of the2013 International Conference on Lightning and Static Electricity (ICOLSE2013), Seattle WA, USA, 2013: SEA13-2. [16] Gu Jianwei, He Tianyu, Chen Weijiang, et al.Characteristics of lightning attachment point distributions on wind turbine blades under downward lightning[C]//2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 2019: 1-7. [17] Zhou Qibin, Liu Canxiang, Bian Xiaoyan, et al.Numerical analysis of lightning attachment to wind turbine blade[J]. Renewable Energy, 2018, 116: 584-593. [18] 张黎, 张瑶, 王国政, 等. 基于雷电物理学的多风机雷电屏蔽研究及风电场防雷布置[J]. 中国电机工程学报, 2018, 38(18): 5335-5342. Zhang Li, Zhang Yao, Wang Guozheng, et al.Lightning shielding of multiple wind turbines based on lightning physics and optimized spatial allocation of wind farm[J]. Proceedings of the CSEE, 2018, 38(18): 5335-5342. [19] Zhang Li, Lao Huanjing, Wang Guozheng, et al.A new method for spatial allocation of turbines in a wind farm based on lightning protection efficiency[J]. Wind Energy, 2019, 22(10): 1310-1323. [20] Becerra M, Cooray V.A self-consistent upward leader propagation model[J]. Journal of Physics D: Applied Physics, 2006, 39(16): 3708-3715. [21] Golde R H.The lightning conductor[J]. Journal of the Franklin Institute, 1967, 283(6): 451-477. [22] 蔡力, 杜懿阳, 彭向阳, 等. 火箭触发闪电的回击电流及电场特征分析[J]. 电工技术学报, 2024, 39(1): 257-266. Cai Li, Du Yiyang, Peng Xiangyang, et al.Analysis of the current and electric field characteristics of rocket triggered lightning return strokes[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 257-266. [23] Jonkman J, Butterfield S, Musial W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Golden: National Renewable Energy Lab (NREL), 2009. [24] Rakov V A, Uman M A.Lightning: Physics and Effects[M]. Cambridge: Cambridge University Press, 2003. [25] Amoruso V, Lattarulo F.Thundercloud pre-stroke electrostatic modeling[J]. Journal of Electrostatics, 2002, 56(2): 255-276. [26] Cooray V, Rakov V, Theethayi N.The lightning striking distance—revisited[J]. Journal of Electrostatics, 2007, 65(5/6): 296-306. [27] Zhou Mi, Huang Jingkang, Chen Jiaer, et al.Lightning attachment characteristic of wind turbine generator: experimental investigation and prediction method based on simulations[J]. Wind Energy, 2023, 26(2): 131-144. [28] Becerra M, Cooray V.Time dependent evaluation of the lightning upward connecting leader inception[J]. Journal of Physics D: Applied Physics, 2006, 39(21): 4695-4702. [29] 黄胜鑫, 陈维江, 贺恒鑫, 等. 风力发电机组下行雷击风险计算方法[J]. 中国电机工程学报, 2019, 39(12): 3541-3551. Huang Shengxin, Chen Weijiang, He Hengxin, et al.Downward lightning risk assessment method associated with wind turbine[J]. Proceedings of the CSEE, 2019, 39(12): 3541-3551. [30] International Electrotechnical Committee.Protection against lightning-part 1: general principles: IEC 62305-1:2024[S]. IEC, 2024. [31] Bian Xiaoyan, Wu Yong, Zhou Qibin, et al.Simulation of cloud-to-ground lightning strikes to wind turbines considering polarity effect based on an improved stochastic lightning model[J]. Atmosphere, 2023, 14(1): 108. [32] 马宇飞, 张黎, 闫江燕, 等. 风机叶片雷击上行先导的起始物理机制与临界长度判据[J]. 中国电机工程学报, 2016, 36(21): 5975-5982, 6042. Ma Yufei, Zhang Li, Yan Jiangyan, et al.Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J]. Proceedings of the CSEE, 2016, 36(21): 5975-5982, 6042. [33] Saba M M F, De Paiva A R, Silva J C O, et al. Upward connecting leaders from buildings[C]//International Symposium on Lightning Protection (XIII SIPDA), Balneário Camboriú, Brazil, 2015: 1-5. [34] Nie Jiayi, Xiang Nianwen, Li Kejie, et al.Multiple wind turbines shielding model of lightning attractiveness for mountain wind farms[J]. Electric Power Systems Research, 2023, 224: 109727. [35] Wang Yu, Qu Lu, Si Tianjun, et al.Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps[J]. Plasma Science and Technology, 2017, 19(6): 064016. [36] Radičević B M, Savić M S.Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1181-1190. [37] 袁涛, 王肖田, 司马文霞, 等. 雷击下输电线路上行先导稳定起始的初始流注区域空间电荷判据[J]. 中国电机工程学报, 2023, 43(14): 5663-5674. Yuan Tao, Wang Xiaotian, Sima Wenxia, et al.Space charge criterion of the initial streamer for the stable inception of positive upward leader under lightning strikes[J]. Proceedings of the CSEE, 2023, 43(14): 5663-5674. [38] Aranguren D, Lopez J, Inampues J, et al.Cloud-to-ground ligthning activity in Colombia and the influence of topography[C]//2014 International Con-ference on Lightning Protection (ICLP), Shanghai, China, 2014: 1850-1855.