Review on Ablative Mechanism of the Buffer Layer in High Voltage XLPE Cable and Associated Detection Methods
Duan Xiaoli1, Liu Yufeng2, Liu Sanwei1, Liu Huicong2, Zhong Lipeng2
1. State Grid Hunan Electric Power Company Limited Research Institute Changsha 410007 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China
Abstract:The water-blocking buffer layer, as an essential component of high-voltage cross-linked polyethylene (XLPE) cables in China, plays roles in electrical connection, moisture absorption and water blocking, and mechanical buffering. However, in recent years, the problem of buffer layer erosion in corrugated aluminum sheath cables has become more prevalent, affecting the safety of equipment and systems. This article provides a comprehensive review of cable structure, buffer layer failure mechanisms, and buffer layer failure detection methods, aiming to provide references for research on buffer layer erosion issues in high-voltage cables, development of detection technologies, and formulation of efficient operation and maintenance strategies. Based on the analysis of the three-dimensional structure, development history, equivalent circuit principles, and key electrical parameters of cable buffer layers, this paper systematically analyzes three types of erosion mechanisms: chemical/electrochemical corrosion, suspended potential, and radial current concentration. It summarizes the reaction or action mechanisms of chemical/electrochemical corrosion, and the white powder formed after corrosion mainly consists of sodium polyacrylate, sodium carbonate, sodium bicarbonate, aluminum hydroxide, and aluminum oxide. The white powder on the surface of the insulation shielding layer mainly includes sodium polyacrylate precipitated by moisture and sodium carbonate and sodium bicarbonate precipitated by chemical reactions inside the buffer layer; the white powder on the surface between the buffer layer and the corrugated aluminum sheath includes sodium carbonate and sodium bicarbonate precipitated by chemical reactions inside the buffer layer, sodium carbonate, sodium bicarbonate, aluminum hydroxide, and aluminum oxide generated by chemical corrosion of the aluminum sheath, and aluminum hydroxide and aluminum oxide generated by electrochemical corrosion. Meanwhile, circuit models or multi-physics field simulation models are established to summarize the forms of suspended potential and radial current concentration faults and key influencing factors. It is found that increasing the thickness of the buffer layer can reduce the maximum surface electric field strength at the defect to a certain extent, but the difference is not by an order of magnitude, so the improvement effect is limited. However, the gap distance between the aluminum sheath and the buffer layer has a significant impact on the maximum surface electric field strength at the defect. When the gap distance increases from 0 to 1 mm, the maximum electric field strength decreases by 62%, indicating that adjusting the physical coordination between the aluminum sheath and the buffer layer is the key to improving the distribution of the electric field between the buffer layers. In addition, compared with the condition of radial current concentration erosion of the buffer layer combined with moisture and radial current concentration, the temperature rise of the buffer layer and the peak intensity of the heat source increase significantly, and the length of poor axial contact of the cable is shortened by nearly 58%. Finally, the feasibility and existing problems of three types of methods, namely X-ray detection, partial discharge detection, and characteristic gas detection, in buffer layer failure detection are discussed. It is found that the defect detection technology based on characteristic gas recognition has advantages such as high accuracy, non-destructive testing, and short detection time. It has great potential in diagnosing buffer layer erosion defects in cables, but it still needs to develop technologies suitable for on-site applications. The following conclusions can be drawn from simulation analysis and systematic review: (1) Water is the premise for the formation of white powder in the buffer layer, so preventing cables from getting wet is the key to avoiding chemical/electrochemical corrosion of the buffer layer. (2) Reasonable adjustment of the physical coordination between the aluminum sheath and the buffer layer is the key to improving the distribution of the electric field between the buffer layers. (3) The combination of buffer layer white powder and radial current concentration erosion conditions is more in line with actual engineering applications. Subsequent research on thermal erosion theory related to buffer layers should focus on the influence of white powder on the electrical characteristic parameters of the buffer layer. (4) The buffer layer defect detection technology based on characteristic gas recognition has broad development prospects. Subsequent research should focus on developing new types of inflatable cables with strong gas detection capabilities and accelerating the exploration and development of on-site portable devices for buffer layer erosion gas generation mechanisms, gas sampling, and gas detection.
段肖力, 刘雨丰, 刘三伟, 刘慧聪, 钟理鹏. 高压XLPE电缆缓冲层烧蚀机理及检测方法综述[J]. 电工技术学报, 2025, 40(5): 1540-1558.
Duan Xiaoli, Liu Yufeng, Liu Sanwei, Liu Huicong, Zhong Lipeng. Review on Ablative Mechanism of the Buffer Layer in High Voltage XLPE Cable and Associated Detection Methods. Transactions of China Electrotechnical Society, 2025, 40(5): 1540-1558.
[1] 李盛涛, 王诗航, 杨柳青, 等. 高压电缆交联聚乙烯绝缘的关键性能与基础问题[J]. 中国电机工程学报, 2022, 42(11): 4247-4254. Li Shengtao, Wang Shihang, Yang Liuqing, et al.Important properties and fundamental issues of the crosslinked polyethylene insulating materials used in high-voltage cable[J]. Proceedings of the CSEE, 2022, 42(11): 4247-4254. [2] 黄光磊, 李喆, 杨丰源, 等. 直流交联聚乙烯电缆泄漏电流试验特性研究[J]. 电工技术学报, 2019, 34(1): 192-201. Huang Guanglei, Li Zhe, Yang Fengyuan, et al.Experimental research on leakage current of DC cross linked polyethylene cable[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 192-201. [3] 冯尧, 邓显波, 李文杰, 等. 高压电缆铝套结构与缓冲层烧蚀特性[J]. 高电压技术, 2023, 49(12): 4919-4928. Feng Yao, Deng Xianbo, Li Wenjie, et al.Ablative properties of buffer layer in aluminum sheath structure of high voltage cable[J]. High Voltage Engineering, 2023, 49(12): 4919-4928. [4] 刘维可, 谢亿, 刘三伟, 等. 高压电缆阻水缓冲层烧蚀缺陷的射线检测工艺参数研究[J]. 电线电缆, 2021(2): 28-32. Liu Weike, Xie Yi, Liu Sanwei, et al.Study on the technical parameters of X-ray detection of water blocking buffer layer ablative defects in high-voltage cable[J]. Wire & Cable, 2021(2): 28-32. [5] Wu Zhiheng, Lai Qingbo, Zhou Wenqing, et al.Analysis of influencing factors on buffer layer discharge for high-voltage XLPE cable[J]. IET Generation, Transmission & Distribution, 2022, 16(20): 4142-4157. [6] 李国倡, 魏艳慧, 雷清泉, 等. 高压电缆半导电屏蔽料关键问题及研究进展[J]. 中国电机工程学报, 2022, 42(4): 1271-1284. Li Guochang, Wei Yanhui, Lei Qingquan, et al.Key problems and research progress of semi-conductive shielding materials for high voltage cables[J]. Proceedings of the CSEE, 2022, 42(4): 1271-1284. [7] 王昊月, 王晓威, 孙茂伦, 等. XLPE电缆绝缘热老化的高压频域介电谱诊断方法[J]. 电工技术学报, 2022, 37(17): 4497-4507. Wang Haoyue, Wang Xiaowei, Sun Maolun, et al.High voltage frequency domain dielectric spectroscopy diagnosis method for thermal aging of XPLE cables[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4497-4507. [8] 侯帅, 傅明利, 贾磊, 等. 220 kV XLPE绝缘材料长期老化性能及寿命评价[J]. 高电压技术, 2023, 49(12): 4900-4910. Hou Shuai, Fu Mingli, Jia Lei, et al.Long-term aging performances and life evaluation of 220 kV XLPE insulation materials[J]. High Voltage Engineering, 2023, 49(12): 4900-4910. [9] 杜伯学, 李忠磊, 杨卓然, 等. 高压直流交联聚乙烯电缆应用与研究进展[J]. 高电压技术, 2017, 43(2): 344-354. Du Boxue, Li Zhonglei, Yang Zhuoran, et al.Application and research progress of HVDC XLPE cables[J]. High Voltage Engineering, 2017, 43(2): 344-354. [10] 刘英, 陈嘉威, 赵明伟, 等. 高压XLPE电缆平滑铝复合护套的弯曲特性及结构设计[J]. 电工技术学报, 2021, 36(23): 5036-5045. Liu Ying, Chen Jiawei, Zhao Mingwei, et al.Bending characteristics and structure design of smooth aluminum composite sheath in HV XLPE cables[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 5036-5045. [11] Kong Jiamin, Zhou Kai, Meng Pengfei, et al.AC corrosion analysis of the buffer layer in HV corrugated-aluminum sheathed power cables[J]. Engineering Failure Analysis, 2022, 139: 106473. [12] 中华人民共和国工业和信息化部. 电缆和光缆用阻水带: JB/T 10259—2014[S]. 北京: 机械工业出版社, 2014. [13] 李文杰, 欧阳本红, 宋鹏先, 等. 电力电缆缓冲层烧蚀故障分析及试验研究[J]. 合成材料老化与应用, 2021, 50(6): 38-41. Li Wenjie, Ouyang Benhong, Song Pengxian, et al.Analysis and experimental study on erosion failure of cushion layer of power cable[J]. Synthetic Materials Aging and Application, 2021, 50(6): 38-41. [14] 中华人民共和国国家质量监督检验检疫总局. 额定电压110 kV交联聚乙烯绝缘电力电缆及其附件: GB/T 11017—2002[S]. 北京: 中国标准出版社, 2003. [15] 蒋晓娟, 何伟. 一起通过局放在线检测技术成功发现的110kV电缆本体缺陷[J]. 华东电力, 2011, 39(11): 1960-1963. [16] 刘凤莲, 夏荣, 李文杰, 等. 高压交联电缆缓冲层烧蚀缺陷检测方法研究[J]. 高压电器, 2022, 58(8): 259-266, 274. Liu Fenglian, Xia Rong, Li Wenjie, et al.Research on detection method of buffer layer ablation defect in high voltage XLPE cable[J]. High Voltage Apparatus, 2022, 58(8): 259-266, 274. [17] 刘宏亮, 刘若溪, 陈平, 等. 高压电缆缓冲层烧蚀及白斑模拟试验研究[J]. 广东电力, 2022, 35(6): 135-142. Liu Hongliang, Liu Ruoxi, Chen Ping, et al.Study on simulation experiment of ablation and white powder of buffer layer in high-voltage cable[J]. Guangdong Electric Power, 2022, 35(6): 135-142. [18] 严有祥, 徐子峻, 尤天鹏, 等. 高压电缆缓冲层烧蚀的成因分析[J]. 高压电器, 2023, 59(2): 184-189. Yan Youxiang, Xu Zijun, You Tianpeng, et al.Cause analysis of buffer layer ablation in high voltage cable[J]. High Voltage Apparatus, 2023, 59(2): 184-189. [19] 邓声华, 江福章, 刘和平, 等. 高压电缆缓冲层材料及结构特性研究[J]. 电线电缆, 2019(2): 19-27. Deng Shenghua, Jiang Fuzhang, Liu Heping, et al.Research on materials and structural characteristics of buffer layers for high voltage cable[J]. Wire & Cable, 2019(2): 19-27. [20] Heinrich R.Broadband measurement of the conductivity and the permittivity of semiconducting materials in high voltage XLPE cables[C]//Eighth International Conference on Dielectric Materials, Measurements and Applications, Edinburgh, UK, 2000: 212-217. [21] 刘洋, 陈杰, 胡丽斌, 等. 高压XLPE电缆缓冲层放电烧蚀机理与实验研究[J]. 绝缘材料, 2021, 54(8): 102-108. Liu Yang, Chen Jie, Hu Libin, et al.Mechanism and experimental study on discharge ablation of high voltage XLPE cable buffer layer[J]. Insulating Materials, 2021, 54(8): 102-108. [22] Cheng Yanting, Hao Yanpeng, Chen Yun, et al.Effects of condition of water blocking tape on the buffer layer failures of high voltage XLPE cables in electric field and temperature field[J]. Engineering Failure Analysis, 2022, 131: 105823. [23] Chen Yun, Hui Baojun, Cheng Yanting, et al.Failure investigation of buffer layers in high-voltage XLPE cables[J]. Engineering Failure Analysis, 2020, 113: 104546. [24] Liu Ying, Lian Rui, Chen Jiawei, et al.The formation mechanism of white substances on water-blocking buffer layer of HV XLPE cables[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020: 1-4. [25] 欧阳本红, 李文杰, 刘英, 等. 高压XLPE电缆阻水缓冲层烧蚀机理[J]. 高电压技术, 2021, 47(9): 3153-3162. Ouyang Benhong, Li Wenjie, Liu Ying, et al.Ablation mechanism of water-blocking buffer layer in HV XLPE cables[J]. High Voltage Engineering, 2021, 47(9): 3153-3162. [26] 陈熠东, 周凯, 雷清泉, 等. 高压电缆阻水缓冲层的白斑现象及析氢腐蚀机理[J]. 中国电机工程学报, 2023, 43(12): 4830-4839. Chen Yidong, Zhou Kai, Lei Qingquan, et al.Phenomena of white spots on the buffer layer and mechanisms of hydrogen evolution corrosion inside high-voltage cables[J]. Proceedings of the CSEE, 2023, 43(12): 4830-4839. [27] Du X Y, Du B X, Li X, et al.Partial discharge behaviors in high voltage cable buffer layer[C]//2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 2020: 826-829. [28] 周松霖, 刘若溪, 姜磊, 等. 高压XLPE绝缘电力电缆护层烧蚀机理分析[J]. 高压电器, 2020, 56(12): 171-176. Zhou Songlin, Liu Ruoxi, Jiang Lei, et al.Ablation mechanism analysis on metal sheath of high voltage XLPE insulated power cable[J]. High Voltage Apparatus, 2020, 56(12): 171-176. [29] Zhang Wei, Tan Xiao, Li Chenying, et al.Simulation study on typical defects of 110 kV cable buffer layer[C]//2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 2023: 4094-4097. [30] 刘英, 陈佳美. 高压XLPE电缆阻水缓冲层电-热场分析及模拟烧蚀试验研究[J]. 中国电机工程学报, 2022, 42(4): 1260-1270. Liu Ying, Chen Jiamei.Electro-thermal field analysis and simulated ablation experiments for the water-blocking buffer layer in high voltage xlpe cable[J]. Proceedings of the CSEE, 2022, 42(4): 1260-1270. [31] Zhang Haoran, Gao Jian, Wu Kangning, et al.Effects of the inhomogeneous microstructures on buffer layer ablation failure in high voltage cables[J]. Engineering Failure Analysis, 2023, 152: 107491. [32] Li Jinxian, Yang Fan, Li Yajun, et al.Research on the impact mechanism of electric field to the waterproof buffer layer in HV power cables[C]//2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 2022: 83-86. [33] Zhou Wenqing, Cheng Hao, Hui Baojun, et al.Key process of the defection of PET buffer layer in XLPE power cable by a case study: thermo-oxidative degradation[J]. Engineering Failure Analysis, 2023, 146: 107131. [34] 张浩然, 高建, 武康宁, 等. 基于温度测量和气体分析的高压电缆缓冲层烧蚀故障检测技术[J]. 高电压技术, 2023, 49(12): 4929-4937. Zhang Haoran, Gao Jian, Wu Kangning, et al.Detection technology of buffer layer ablation failure in high voltage cables based on temperature measurement and gases analysis[J]. High Voltage Engineering, 2023, 49(12): 4929-4937. [35] 刘顺满, 王健, 程皓, 等. 高压XLPE电缆缓冲层烧蚀缺陷特征气体分析[J]. 广东电力, 2022, 35(6): 116-125. Liu Shunman, Wang Jian, Cheng Hao, et al.Analysis on characteristic gas of ablative defect in buffer layer of high voltage XLPE cable[J]. Guangdong Electric Power, 2022, 35(6): 116-125. [36] 刘宏亮, 刘若溪, 赵西元, 等. 径向电流集中诱发的高压交联聚乙烯电缆缓冲层烧蚀研究[J]. 绝缘材料, 2021, 54(8): 94-101. Liu Hongliang, Liu Ruoxi, Zhao Xiyuan, et al.Study on ablation of buffer layer in high voltage XLPE cable induced by concentrated radial current[J]. Insulating Materials, 2021, 54(8): 94-101. [37] 冯超, 李伟, 曹先慧, 等. 220kV电缆缓冲层烧蚀缺陷射线检测方法[J]. 湖南电力, 2020, 40(5): 43-46. Feng Chao, Li Wei, Cao Xianhui, et al.Radiographic detection method of ablative defects in 220 kV cable buffer layer[J]. Hunan Electric Power, 2020, 40(5): 43-46. [38] 闫斌, 何喜梅, 王志惠, 等. X射线数字成像检测系统在GIS设备中的应用[J]. 高压电器, 2010, 46(11): 89-91. Yan Bin, He Ximei, Wang Zhihui, et al.Application of X-ray digital imaging defect detection system in GIS equipment[J]. High Voltage Apparatus, 2010, 46(11): 89-91. [39] Huang Zeqi, Lu Fei, Tong Yafang, et al.Technology for the detection of ablation defects in buffer layers of high-voltage cables[J]. IEEE Access, 2022, 10: 92843-92853. [40] 刘三伟, 段肖力, 黎刚, 等. 高压电缆缓冲层缺陷数字X射线无损检测技术研究[J]. 湖南电力, 2020, 40(6): 18-21. Liu Sanwei, Duan Xiaoli, Li Gang, et al.Research on digital X-ray non-destructive testing technology of cable buffer layer defects[J]. Hunan Electric Power, 2020, 40(6): 18-21. [41] 刘三伟, 谢亿, 张军, 等. 高压电缆X射线数字影像深度处理和缓冲层缺陷智能识别技术[J]. 南方电网技术, 2020, 14(12): 66-70. Liu Sanwei, Xie Yi, Zhang Jun, et al.High voltage cable X-ray digital image depth processing and technology of buffer layer defect intelligent recognition[J]. Southern Power System Technology, 2020, 14(12): 66-70. [42] 刘顺满. 高压电缆缓冲层放电烧蚀缺陷特征气体分析[D]. 广州: 华南理工大学, 2022. Liu Shunman.Characteristic gas analysis of ablative defect in buffer layer of high voltage cable[D]. Guangzhou: South China University of Technology, 2022. [43] 赵岩, 郑书生. 基于损耗电流谐波特征分析的XLPE电缆局部尖刺缺陷诊断[J]. 电工技术学报, 2023, 38(21): 5725-5737. Zhao Yan, Zheng Shusheng.Diagnosis of XLPE cable local tip defects based on analysis of harmonic characteristics of loss current[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5725-5737. [44] 王晓卫, 王雪, 王毅钊, 等. 基于图像信息熵与多元变分模态分解的电缆局部放电信号去噪方法[J]. 电工技术学报, 2024: 39(13): 4100-4115, 4152. Wang Xiaowei, Wang Xue, Wang Yizhao, et al.A denoising algorithm for cable partial discharge signals based on image information entropy and multivariate variational mode decomposition[J]. Transactions of China Electrotechnical Society, 2024: 39(13): 4100-4115, 4152. [45] 张翼, 朱永利. 结合知识蒸馏和图神经网络的局部放电增量识别方法[J]. 电工技术学报, 2023, 38(5): 1390-1400. Zhang Yi, Zhu Yongli.Incremental partial discharge recognition method combining knowledge distillation with graph neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1390-1400. [46] 张龙, 黄亭. 配电电缆电气参数测量用脉冲发生器研制与试验[J]. 电气技术, 2020, 21(3): 84-90. Zhang Long, Huang Ting.Development and test of pulse generator for measuring electrical parameters of distribution cables[J]. Electrical Engineering, 2020, 21(3): 84-90. [47] 刘骥, 闫爽, 王守明, 等. 基于低频高压频域介电谱的XLPE电缆电树枝老化状态评估[J]. 电工技术学报, 2023, 38(9): 2510-2518. Liu Ji, Yan Shuang, Wang Shouming, et al.Evaluation of electrical tree aging state of XLPE cables based on low frequency and high voltage frequency domain spectroscopy[J]. Transactions of China Electro-technical Society, 2023, 38(9): 2510-2518. [48] Zhang Xiaohua, Pang Bo, Liu Yaxin, et al.Review on detection and analysis of partial discharge along power cables[J]. Energies, 2021, 14(22): 7692. [49] Du Boxue, Du Xiaoyu, Kong Xiaoxiao, et al.An investigation on discharge fault in buffer layer of 220kV XLPE AC cable[J]. IET Science, Measurement & Technology, 2021, 15(6): 508-516. [50] 张翼, 朱永利. 基于深度-广度联合剪枝的电力设备局部放电轻量化诊断方法[J]. 电工技术学报, 2023, 38(7): 1935-1945, 1955. Zhang Yi, Zhu Yongli.A lightweight partial discharge diagnosis method of power equipment based on depth-width joint pruning[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1935-1945, 1955. [51] 何维晟, 吴照国, 邓帮飞, 等. 高压电缆缓冲层烧蚀缺陷超声检测技术仿真研究[J]. 高压电器, 2022, 58(11): 230-237, 260. He Weisheng, Wu Zhaoguo, Deng Bangfei, et al.Simulation research on ultrasonic detection technology of buffer layer ablation defects in high voltage cables[J]. High Voltage Apparatus, 2022, 58(11): 230-237, 260. [52] 赵书静, 詹博博, 龚梁涛, 等. 基于调频连续波相位敏感特性的电缆局部缺陷检测方法[J]. 电工技术学报, 2023, 38(11): 3009-3021. Zhao Shujing, Zhan Bobo, Gong Liangtao, et al.Research on cable local defect detection method based on phase-sensitive characteristics of frequency modulated continuous wave[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3009-3021. [53] 张毅斌, 李梦诗, 徐子弘, 等. 基于轨迹图像与卷积神经网络的电缆早期故障识别[J]. 广东电力, 2022, 35(8): 86-94. Zhang Yibin, Li Mengshi, Xu Zihong, et al.Cable incipient fault identification based on trajectory image and convolutional neural network[J]. Guangdong Electric Power, 2022, 35(8): 86-94. [54] 张天东, 王力农, 宋斌, 等. 基于化学反应速率理论的空气开关柜局部放电特征气体研究[J]. 高压电器, 2023, 59(12): 19-26. Zhang Tiandong, Wang Linong, Song Bin, et al.Research on characteristic gases of partial discharge in air switchgear based on chemical reaction rate theory[J]. High Voltage Apparatus, 2023, 59(12): 19-26. [55] 王昊, 张长虹, 杨旭, 等. 420kV及以上高压断路器电寿命试验中SF6气体分解产物及其影响研究[J]. 高压电器, 2023, 59(10): 88-95. Wang Hao, Zhang Changhong, Yang Xu, et al.Study on the effect of SF6 gas decomposition products in electrical endurance test of 420 kV and above circuit breaker[J]. High Voltage Apparatus, 2023, 59(10): 88-95. [56] Kong Jiamin, Zhou Kai, Chen Yidong, et al.A novel condition assessment method for corrugated aluminum sheathed XLPE cables based on evolved gas analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(2): 883-891. [57] 周凯, 赵琦, 李原, 等. 基于分阶段产气的高压电缆阻水缓冲层状态评估[J]. 高电压技术, 2022, 48(10): 3882-3890. Zhou Kai, Zhao Qi, Li Yuan, et al.Evaluation technology of water-blocking buffer layer of high voltage cable based on stages classification of gases evolution[J]. High Voltage Engineering, 2022, 48(10): 3882-3890.