Quantitative Assessment of the Field System Parameter Sensitivity for Lithium-Ion Battery Electrochemical-Thermal Coupling Model with Dynamic Operating Conditions
Xu Zhicheng1, Zhang Hongyi1, Tian Jinxin1, Wang Yang1, Jiang Kai2
1. State Key Laboratory of Intelligence Power Distribution Equipment and system Hebei University of Technology Tianjin 300401 China; 2. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:Lithium-ion batteries are complex electrochemical systems characterized by high non-linearity and mutual coupling of parameters. However, during the theoretical modeling of lithium-ion batteries, the model parameter perturbation and mutual coupling will cause the deviation of the model output characteristics which will seriously affect the prediction accuracy of the model. It is critical to quantify the influence of each parameter on the model output and accurately describe the relationship between model parameters and battery output characteristics. This paper establishes a quantitative assessment method for the sensitivity of the battery model field system parameters. Firstly, considering the electrochemical reaction and thermal effects during the operation of lithium-ion batteries, an electrochemical-thermal coupling model for lithium-ion batteries is constructed. The rise in terminal voltage and average temperature is then taken as the output characteristic of the model. Secondly, the model parameters are classified based on their characteristics and physical field belonging, with corresponding value ranges provided. Then, the Latin Hypercube Sampling method constructs the sampling matrix of the model field system parameters as the input data. Finally, three different multidimensional dynamic test conditions are designed. The Sobol's index method is used to quantitatively analyze the global sensitivity of the model field system parameters. A quantitative evaluation criterion is established for parameter sensitivity based on the operating conditions. The results show that under the constant C-rate condition, cathode particle radius, cathode solid phase diffusion coefficient, and cathode solid phase volume fraction significantly influence the system's output characteristics. Under the dynamic low-C rate condition, cathode solid phase volume fraction, cathode particle radius, and cathode reaction rate constant have significant effects. In the case of dynamic high-C rate, the cathode solid phase diffusion coefficient, the anode particle radius, the anode solid phase diffusion coefficient, and the cathode electrolyte volume fraction have significant effects. Combining the sensitivity quantification for all working conditions, the interactions between the cathode initial ionic concentration and the cathode maximum ionic concentration, the cathode reaction rate constants and the cathode solid phase volume fraction, as well as the Bruggeman coefficient and the cathode maximum ionic concentration have great effects on the model terminal voltage. Meanwhile, the interactions between the cathode reaction rate constants and the anode particle radius, the cathode reaction rate constants and the Bruggeman coefficient, as well as the electrolyte diffusion coefficient and the anode particle radius, affect the average temperature rise. This paper can provide a theoretical basis for optimizing model parameters under dynamic working conditions and modeling lithium-ion batteries.
徐志成, 张弘毅, 田金鑫, 汪洋, 蒋凯. 锂离子电池电化学-热耦合模型场域系统参数随动态工况的敏感性量化评估[J]. 电工技术学报, 2025, 40(20): 6716-6732.
Xu Zhicheng, Zhang Hongyi, Tian Jinxin, Wang Yang, Jiang Kai. Quantitative Assessment of the Field System Parameter Sensitivity for Lithium-Ion Battery Electrochemical-Thermal Coupling Model with Dynamic Operating Conditions. Transactions of China Electrotechnical Society, 2025, 40(20): 6716-6732.
[1] 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. Gu Juping, Jiang Ling, Zhang Xinsong, et al.Estimation and influencing factor analysis of lithium- ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. [2] 李卓昊, 石琼林, 王康丽, 等. 锂离子电池健康状态估计方法研究现状与展望[J]. 电力系统自动化, 2024, 48(20): 109-129. Li Zhuohao, Shi Qionglin, Wang Kangli, et al.Research status and prospects of state of health estimation methods for lithium-ion batteries[J]. Auto- mation of Electric Power Systems, 2024, 48(20): 109-129. [3] Xu Zhicheng, Zhang Chuang, Sun Bo, et al.The electric-thermal coupling simulation and state esti- mation of lithium-ion battery[J]. Journal of Energy Storage, 2023, 58: 106431. [4] Chang Chun, Chen Lang, Liu Xiaoyu, et al.Elec- trochemical aging model of lithium-ion battery with impedance output and its parameter sensitivity analysis and identification[J]. Journal of Energy Storage, 2024, 86: 111277. [5] Hou Jiayang, Xu Jun, Lin Chuanping, et al.State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method[J]. Energy, 2024, 290: 130056. [6] 赵英杰, 张闯, 刘素贞, 等. 基于电极等效电路模型的锂离子电池无析锂快充策略优化研究[J]. 电工技术学报, 2024, 39(18): 5868-5882. Zhao Yingjie, Zhang Chuang, Liu Suzhen, et al.Optimization of fast charging strategy for lithium-ion batteries without deposition based on electrode equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5868-5882. [7] Li Mengjie, Hu Yuli, Mao Zhaoyong, et al.Hydrostatic pressure adaptive dual-polarized model for state of charge estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 73: 108979. [8] 刘萍, 李泽文, 蔡雨思, 等. 基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法[J].电工技术学报, 2024, 39(10): 3232-3243. Liu Ping, Li Zewen, Cai Yusi, et al.Joint estimation method of SOC and SOH based on fusion of equivalent circuit model and data-driven model[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3232-3243. [9] Graule A, Oehler F F, Schmitt J, et al.Development and evaluation of a physicochemical equivalent circuit model for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2024, 171(2): 020503. [10] 李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258. Li Yingshun, Kan Hongda, Guo Zhannan, et al.Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD- LSTM-GPR[J]. Transactions of China Electro- technical Society, 2024, 39(10): 3244-3258. [11] Meng Jinhao, Luo Guangzhao, Ricco M, et al.Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5): 659. [12] Doyle M, Fuller T F, Newman J.Modeling of galvanostatic charge and discharge of the lithium/ polymer/insertion cell[J]. Journal of the Electro- chemical Society, 1993, 140(6): 1526. [13] 孙丙香, 宋东林, 阮海军, 等. 基于自产热和外传热的锂离子电池热学模型参数辨识方法[J]. 电工技术学报, 2024, 39(1): 278-288. Sun Bingxiang, Song Donglin, Ruan Haijun, et al.Parameter identification method of thermal model of lithium-ion battery based on self-generated heat and external heat transfer[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 278-288. [14] 徐乐. 电动车辆锂离子电池高精度机理重构建模、参数辨识及寿命预测研究[D]. 重庆: 重庆大学, 2022. Xu Le.Lithium-ion battery high-fidelity modeling, parameter identification, and lifetime prognostics for electric vehicles[D]. Chongqing: Chongqing University, 2022. [15] 马睿, 杨富旺, 霍喆, 等. 质子交换膜燃料电池多物理场建模及模型参数敏感性分析[J]. 中国电机工程学报, 2024, 44(7): 2699-2710. Ma Rui, Yang Fuwang, Huo Zhe, et al.Multi-physical domain modeling and parameter sensitivity analysis of proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2024, 44(7): 2699-2710. [16] Andersson M, Streb M, Ko J Y, et al.Parametrization of physics-based battery models from input-output data: a review of methodology and current research[J]. Journal of Power Sources, 2022, 521: 230859. [17] Li Weihan, Cao Decheng, Jöst D, et al.Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. [18] Schmidt A P, Bitzer M, Imre Á W, et al.Experiment- driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell[J]. Journal of Power Sources, 2010, 195(15): 5071-5080. [19] Yu Shuyang, Xu Chao, Mao Ya, et al.Heat generation mechanism and parameter sensitivity analysis of NCA-graphite battery based on electrochemical- thermal coupling model[J]. Journal of the Elec- trochemical Society, 2023, 170(6): 060514. [20] Zeng Xia, Xu Le, Deng Zhongwei, et al.Global sensitivity analysis of battery single particle model parameters[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 2019: 1-6. [21] Gao Yizhao, Zhang Xi, Zhu Chong, et al.Global parameter sensitivity analysis of electrochemical model for lithium-ion batteries considering aging[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1283-1294. [22] Alipour M, Yin Litao, Tavallaey S S, et al.A surrogate-assisted uncertainty quantification and sensitivity analysis on a coupled electrochemical- thermal battery aging model[J]. Journal of Power Sources, 2023, 579: 233273. [23] Han Xuebing, Ouyang Minggao, Lu Languang, et al.Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources, 2015, 278: 814-825. [24] Yu Hanqing, Yang Kaiyi, Zhang Lisheng, et al.Simplified numerical modeling and analysis of electrolyte behavior in multiple physical fields for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72: 108536. [25] Wang Yaxuan, Li Junfu, Guo Shilong, et al.Parameter sensitivity analysis of a multi-physics coupling aging model of lithium-ion batteries[J]. Electrochimica Acta, 2024, 477: 143811. [26] Renardy M, Joslyn L R, Millar J A, et al.To sobol or not to sobol? The effects of sampling schemes in systems biology applications[J]. Mathematical Biosciences, 2021, 337: 108593. [27] Tarantola S, Becker W, Zeitz D.A comparison of two sampling methods for global sensitivity analysis[J]. Computer Physics Communications, 2012, 183(5): 1061-1072. [28] Kucherenko S, Albrecht D, Saltelli A.Exploring multi-dimensional spaces: a comparison of latin hypercube and quasi monte carlo sampling tech- niques[J]. Statistics, 2015. [29] Zhou Kai, Enos R, Zhang Dianyun, et al.Uncertainty analysis of curing-induced dimensional variability of composite structures utilizing physics-guided Gaussian process meta-modeling[J]. Composite Structures, 2022, 280: 114816. [30] 陈卫平, 涂宏志, 彭驰, 等. 环境模型中敏感性分析方法评述[J]. 环境科学, 2017, 38(11): 4889-4896. Chen Weiping, Tu Hongzhi, Peng Chi, et al.Comment on sensitivity analysis methods for envi- ronmental models[J]. Environmental Science, 2017, 38(11): 4889-4896. [31] 胡涛, 申立群, 朱镜达, 等. 基于FAST和Sobol指数法的雷达系统效能敏感性分析[J]. 系统工程与电子技术, 2024, 46(2): 561-569. Hu Tao, Shen Liqun, Zhu Jingda, et al.Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method[J]. Systems Engineering and Electronics, 2024, 46(2): 561-569. [32] 周鹏. 高分辨率光学遥感卫星效能评估与参数敏感性分析研究[D]. 武汉: 武汉大学, 2020. Zhou Peng.Research on effectiveness evaluation and parameter sensitivity analysis for the high resolution optical remote sensing satellite[D]. Wuhan: Wuhan University, 2020. [33] Sobol I M.On sensitivity estimation for nonlinear mathematical models[J]. Keldysh Applied Mathe- matics Institute, 1990: 112-118. [34] Smith K, Wang Chaoyang.Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources, 2006, 161(1): 628-639. [35] Torchio M, Magni L, Gopaluni R B, et al.LIONSIMBA: a Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control[J]. Journal of the Electro- chemical Society, 2016, 163(7): 1192-1205. [36] Ji Yan, Zhang Yancheng, Wang Chaoyang.Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4): 636-649. [37] Rheinfeld A, Sturm J, Noel A, et al.Quasi-isothermal external short circuit tests applied to lithium-ion cells: part II. modeling and simulation[J]. Journal of the Electrochemical Society, 2019, 166(2): 151-177. [38] Pereira D J, Fernandez M A, Streng K C, et al.Accounting for non-ideal, lithiation-based active material volume change in mechano-electrochemical pouch cell simulation[J]. Journal of the Electro- chemical Society, 2020, 167(8): 080515. [39] Fang Weifeng, Kwon O J, Wang Chaoyang.Electrochemical-thermal modeling of automotive Li- ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34(2): 107-115. [40] Erhard S V, Osswald P J, Keil P, et al.Simulation and measurement of the current density distribution in lithium-ion batteries by a multi-tab cell approach[J]. Journal of the Electrochemical Society, 2017, 164(1): A6324-A6333. [41] Panchal S, Mathew M, Fraser R, et al.Electro- chemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. [42] Ecker M, Tran T K D, Dechent P, et al. Parameterization of a physico-chemical model of a lithium-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(9): A1836-A1848. [43] Smekens J, Paulsen J, Yang W, et al.A modified multiphysics model for lithium-ion batteries with a Li x Ni1/3Mn1/3Co1/3O2 electrode[J]. Electrochimica Acta, 2015, 174: 615-624. [44] Stewart S G, Srinivasan V, Newman J.Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation[J]. Journal of the Electrochemical Society, 2008, 155(9): A664. [45] Ehrl A, Landesfeind J, Wall W A, et al.Deter- mination of transport parameters in liquid binary lithium ion battery electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(4): A826-A836. [46] Pan Tingchen, Liu E J, Ku H C, et al.Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm[J]. Electro- chimica Acta, 2022, 404: 139574. [47] Wang Dafang, Zhang Qi, Huang Huanqi, et al.An electrochemical-thermal model of lithium-ion battery and state of health estimation[J]. Journal of Energy Storage, 2022, 47: 103528. [48] Xu Le, Lin Xianke, Xie Yi, et al.Enabling high- fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification[J]. Energy Storage Materials, 2022, 45: 952-968. [49] Zhang Liqiang, Lü Chao, Hinds G, et al.Parameter sensitivity analysis of cylindrical LiFePO4 battery performance using multi-physics modeling[J]. Journal of the Electrochemical Society, 2014, 161(5): 762-776. [50] Lin Nan, Xie Xiangzhong, Schenkendorf R, et al.Efficient global sensitivity analysis of 3D multi- physics model for Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): 1169-1183.